

Universal gas constant $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ Avogadro constant $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Plank's constant $h = 6.626 \times 10^{-34} \text{J s}$ Velocity of light $c = 3 \times 10^8 \text{m s}^{-1}$

Introduction to paper Class- 06 -2023 A/L

Answer all the Questions.

1. 2006 AL

(b) (i) A solution B contains SO₃²⁻ and C₂O₄²⁻ ions. 25.0 cm³ of solution B required 40.0 cm³ of one of the solution of the solution for complete reaction under acidic conditions. The resulting solution was treated with excess of BaCl₂ in the presence of dil. HNO₃. The mass of the white precipitate so obtained after drying was 0.466 g.

Calculate the concentrations of SO_3^{2-} and $C_2O_4^{2-}$ ions in solution B. (Ba = 137.0; S = 32.0; O = 16.0)

Hint: Consider that, KMnO₄ converts $SO_3^{2-} \longrightarrow SO_4^{2-}$ and $C_2O_4^{2-} \longrightarrow CO_2$

2. 2008 AL

(b) A solution B contains $C_2O_4^{2-}$ and CO_3^{2-} ions. A 25.00 cm³ portion of this solution was treated with excess $Ca(NO_3)_2$ solution to completely precipitate $C_2O_4^{2-}$ and CO_3^{2-} ions. The precipitate so obtained after drying had a mass of 0.820 g. This precipitate was then dissolved in dil . H_2SO_4 and titrated with 0.05 mol dm³ KMnO₄ solution. The titration required 20.00 cm³ of the KMnO₄ solution. Calculate the concentrations of $C_2O_4^{2-}$ and CO_3^{2-} ions in the solution B. (Ca = 40.0, C = 12.0, O = 16.)

(6.0 marks)

	(c) A 25 0.1 m	nol dm ⁻³ solution of acidic MnO ₄ for complete reaction, In the above reaction A ⁿ⁺
	ions	are converted to AO ₃
	i) V	/rite the balanced oxidation half reaction
	••	<u>, , , , , , , , , , , , , , , , , , , </u>
		Vrite the balanced reduction half reaction
	iii) F	ind the value of n.
4.	sol	colution of H_2O_2 has been diluted by twenty times. When 25.00 cm ³ of above diluted ation was acidified with dill. H_2SO_4 acid and titrated with 0.0150 mol dm ⁻³ of KMnO ₄
	Bef	ution, a volume of $20.00~\rm cm^3$ was required. For diluting another $10.00~\rm cm^3$ sample was acidified with dill. HNO ₃ and reacted with ess Ag ₂ O to form Ag metal and Oxygen gas. (Ag = 108) Write the balanced chemical equation for reaction of H ₂ O ₂ with KMnO ₄ in acidic
	Bef	fore diluting another $10.00~\text{cm}^3$ sample was acidified with dill. HNO ₃ and reacted with ess Ag ₂ O to form Ag metal and Oxygen gas. (Ag = 108)
	Bef	fore diluting another $10.00~\rm cm^3$ sample was acidified with dill. HNO ₃ and reacted with ess Ag ₂ O to form Ag metal and Oxygen gas. (Ag = 108) Write the balanced chemical equation for reaction of H ₂ O ₂ with KMnO ₄ in acidic
	Bef	fore diluting another $10.00~\rm cm^3$ sample was acidified with dill. HNO ₃ and reacted with ess Ag ₂ O to form Ag metal and Oxygen gas. (Ag = 108) Write the balanced chemical equation for reaction of H ₂ O ₂ with KMnO ₄ in acidic
	Bef	fore diluting another $10.00~\rm cm^3$ sample was acidified with dill. HNO ₃ and reacted with ess Ag ₂ O to form Ag metal and Oxygen gas. (Ag = 108) Write the balanced chemical equation for reaction of H ₂ O ₂ with KMnO ₄ in acidic
	Bef exc i)	ore diluting another 10.00 cm ³ sample was acidified with dill. HNO ₃ and reacted with ess Ag ₂ O to form Ag metal and Oxygen gas. (Ag = 108) Write the balanced chemical equation for reaction of H ₂ O ₂ with KMnO ₄ in acidic medium
	Bef exc i)	fore diluting another $10.00~\rm cm^3$ sample was acidified with dill. HNO ₃ and reacted with ess Ag ₂ O to form Ag metal and Oxygen gas. (Ag = 108) Write the balanced chemical equation for reaction of H ₂ O ₂ with KMnO ₄ in acidic medium
	Bef exc i)	fore diluting another $10.00~\rm cm^3$ sample was acidified with dill. HNO ₃ and reacted with ess Ag ₂ O to form Ag metal and Oxygen gas. (Ag = 108) Write the balanced chemical equation for reaction of H ₂ O ₂ with KMnO ₄ in acidic medium
	Bef exc i)	ore diluting another 10.00 cm ³ sample was acidified with dill. HNO ₃ and reacted with ess Ag ₂ O to form Ag metal and Oxygen gas. (Ag = 108) Write the balanced chemical equation for reaction of H ₂ O ₂ with KMnO ₄ in acidic medium
	Bef exc i)	fore diluting another $10.00~\rm cm^3$ sample was acidified with dill. HNO ₃ and reacted with ess Ag ₂ O to form Ag metal and Oxygen gas. (Ag = 108) Write the balanced chemical equation for reaction of H ₂ O ₂ with KMnO ₄ in acidic medium
	Bef exc i)	ore diluting another 10.00 cm ³ sample was acidified with dill. HNO ₃ and reacted with ess Ag ₂ O to form Ag metal and Oxygen gas. (Ag = 108) Write the balanced chemical equation for reaction of H ₂ O ₂ with KMnO ₄ in acidic medium Find out the concentration of initial H ₂ O ₂ solution.
	Bef exc i)	ore diluting another 10.00 cm ³ sample was acidified with dill. HNO ₃ and reacted with ess Ag ₂ O to form Ag metal and Oxygen gas. (Ag = 108) Write the balanced chemical equation for reaction of H ₂ O ₂ with KMnO ₄ in acidic medium Find out the concentration of initial H ₂ O ₂ solution.
	Bef exc i)	ore diluting another 10.00 cm ³ sample was acidified with dill. HNO ₃ and reacted with ess Ag ₂ O to form Ag metal and Oxygen gas. (Ag = 108) Write the balanced chemical equation for reaction of H ₂ O ₂ with KMnO ₄ in acidic medium Find out the concentration of initial H ₂ O ₂ solution.
	Bef exc i)	ore diluting another 10.00 cm ³ sample was acidified with dill. HNO ₃ and reacted with ess Ag ₂ O to form Ag metal and Oxygen gas. (Ag = 108) Write the balanced chemical equation for reaction of H ₂ O ₂ with KMnO ₄ in acidic medium Find out the concentration of initial H ₂ O ₂ solution.
	Bef exc i)	ore diluting another 10.00 cm ³ sample was acidified with dill. HNO ₃ and reacted with ess Ag ₂ O to form Ag metal and Oxygen gas. (Ag = 108) Write the balanced chemical equation for reaction of H ₂ O ₂ with KMnO ₄ in acidic medium Find out the concentration of initial H ₂ O ₂ solution. Write balanced equation for reaction of H ₂ O ₂ with Ag ₂ O in acidic medium.