දුලාන් මධුරංග- රසායන විදහාව විභාග මධපස්ථානය Special Online Speed Test අධපයන පොදු සහතික පතු (උසස් පෙළ), 2023 අශෝස්තු General Certificate Of Education (Adv. Level) Examination, August 2023 රසායන විදහාව I Chemistry I 02 S/E I Time - 2.5 Hours

Universal gas constant $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ Avogadro constant $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Plank's constant $h = 6.626 \times 10^{-34} \text{ J s}$ Velocity of light $c = 3 \times 10^8 \text{ m s}^{-1}$

Second Semester Test(Unit 01-03) - 2022 March

Part I- MCQ

*	Answer	all	the	Questions.
. ◆ .		an	unc	Outsuons.

- **Do not use Calculators or any other Notes.**
- **❖** Submit your Answer script (including Rough works) in <u>PDF Form.</u>
- 1. Which of the following gives the electron pair geometry and hybridisation around an oxygen atom in H_2 respectively?
 - (1) angular, sp³

- (2) tetrahedral, sp³
- (3) tetrahedral, sp²

(4) angular, sp

- (5) linear, sp
- 2. The correct variation of the first ionsation energy of the elements Li, K, N, O, Ne and Ar is
 - (1) K < Li < O < N < Ar < Ne.

(2) Ne < Ar < N < O < Li < K.

(3) K < Li < O < N < Ne < Ar.

(4) K < O < Li < N < Ar < Ne.

- (5) Li < N < O < K < Ar < Ne.
- 3. In which of the following elements does a gaseous atom in ground state contain **only** four unpaired electrons?
 - (1) Ti
- (2) Cr
- (3) Fe
- (4) Co

- (5) Sn
- 4. In an atom, what is the number of atomic orbitals in which an electron with principal quantum number, n = 3 and magnetic quantum number, $m_i = 0$ can exist?
 - (1) 1
- (2) 2
- (3) 3
- (4) 4
- (5) 5
- The volume of $0.01 \text{ mol dm}^{-3} \text{ K}_2\text{Cr}_2\text{O}_7$ (cm³) required to react completely with 25.00 cm^3 of 0.02 mol dm^{-3} of FeI, aqueous solution in acidic medium is,
 - (1) 8.33
- (2) 10.00
- (3) 16.67
- (4) 20.00
- (5) 25.00

6.		Pb in a mixture containe?				
	(1) 0.20	(2) 0.25	(3) 0.50	(4) 0.65	(5) 0.8	80
7.	Which gives th	ne correct variation of	of O - O bond len	gth in the species,	O_{2}, O_{2}^{2-} and	1 O _{3?}
	(1) $O_2 < O_3 <$	O_2^{2-}	(2) $O_3 < O_2$	< O ₂ ²⁻	(3) C	$O_2 < O_2^{2-} < O_3$
	(4) $O_3 < O_2^{2-}$	< O ₂	(5) $O_2^{2-} < O$	$_3$ < O_2		
8.	central atom? (1) Square py	following molecula ramidal , Linear lanar , T-shape	(2	e octahedral electr) Linear, Square) See-saw shape	planer	·
	` '	ramidal, Square pl) See saw shape	, mgomm	oipjiumuu
9.		ructure of NH ₂ OCO s dot-dash structures (2) 4			H – N –	O - C - O - H
	(4) 6	(5) 7			Н	
10.	(1) Hybrid(2) Hybrid(3) The ang(4) All carb	he following statement orbitals formed from orbitals may form π lule between sp ² hybride on atoms in hydrocar orbitals formed from	a given hybridisation bonds. I orbitals is 120°. bons are hybridised	n have the same sh		
11.	Which molecu (1) O ₃	le consists of only I (2) OF ₂		secondary interact (4) SI		(5) XeF ₄
12.	$(NH_4)_2SO_4$ so be formed?	2mol dm ⁻³ aqueou lution. What is max	kimum theoretical	amount of precip	pitate of Ba	SO ₄ that can
	(1) 0.01mol	(2) 0.02mol	(3) 0.05r	nol (4)	U.1mol	(5) 1.0mol

Response	First statement	Second statement
(1)	True	True and correctly explains the first statement.
(2)	True	True but does not explain the first statement correctly.
(3)	True	False
(4)	False	True
(5)	False	False

	First statement	Second statement
13.	Carbon shows the highest oxidation state when Li to Fare considered.	The oxidation state of carbon in $C_2O_4^{2-}$ is +3.
14.	The second ionization enthalpy of Al is less than that of Mg.	Nuclear charge of Al is higher than that of Mg.
15.	Spectral lines having highest frequency are Lymana series of the emission spectrum	

and $n=\alpha$ (infinite)

	1																	2
1	Н																	He
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	o	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg				.,							Al	Si	P	s	CI	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71]
			La	Ce	Pr	Nd	Pm	Şm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Hydrogen

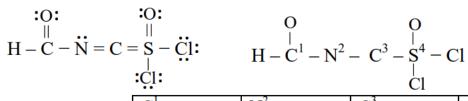
Chemistry - Dulan Madurange ලබා මුල්ලික - රසයන විදුවේ Chemistry - Dulan Madurange ලබා මුල්ලික - රසයන විදුවේ Chemistry - Dulan Madurange ලබා මුල්ලික - රසයන විදුවේ Chemistry - Dulan Madurange ලබා මුල්ලික - රසයන විදුවේ Chemistry - Dulan Madurange ලබා මුල්ලික - රසයන විදුවේ පිළිබඳ - රසයන විදුවේ පිළුවේ පිළිබඳ - රසයන විදුවේ පිළුවේ පිළිබඳ - රසයන විදුවේ පිළිබඳ - රසයන විදුවේ පිළිබඳ - රසයන විදු

Universal gas constant $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ Avogadro constant $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Plank's constant $h = 6.626 \times 10^{-34} \text{J s}$ Velocity of light $c = 3 \times 10^8 \text{m s}^{-1}$

Part II- A- Structured Essay

***** Answer all the Questions

- (a) If the following statements are true mark "√" and if the statement is false put "x" marks in the given space.
 - (1) Hybridization of the central atom of SO₃² is sp³.
 - (2) If the dipole moment of AX₄ molecule is zero,
 the shape of the molecule is exactly tetrahedral.
 - (3) The releasing energy of gaining an electron is higher in Cl than that of F.
 - (4) The releasing energy of hydration of a stable cation in second period is increasing down the group.


(b)

(i) Draw the most acceptable Lewis dot-dash structure for the molecule C₃N₂H₂O. Its skeleton is given below.

(ii) Most stable Lewis dot-dash structure of molecule H₃N₃CO is given below. Draw two more Lewis dot-dash structures (resonance structures) for this molecule.

$$H - N - C - N = N - H$$

(iii) Complete	the given	table	considering	the	Lewis	dot-dash	structure	and	its	labelled
skeletal str	ructure giv	en bel	ow.							

	\mathbb{C}^1	N^2	\mathbb{C}^3	S^4		
VSEPR pairs						
around the atom.						
Electron pair						
geometry around						
the atom.						
Shape around						
the atom.						
Hybridization of						
the atom.						

Questions (iv) to (v) are based on the Lewis dot-dash structure given in above question (iii). Labelling of atoms is as in part (iii).

(iv)Identify the atomic/hybrid orbitals involved in the formation of σ – bonds between the two atoms given below.

I.	$H - C^1$	H:	C^1 :
II.	C^1 - O	C^1 :	0:
III.	$C^1 - N^2$	C^1 :	N^2 :
137	N^2 C^3	N^2 .	C^3 .

(v)Identify the atomic orbitals involved in the formation of π – bonds between the two atoms given below.

 (i) Write oxidation half ionic equation. (ii) Write the reduction half ionic equation. (iii) Balance the above equation. (iv) A 10 cm³ sample of hydroxyl amine was diluted to 1 dm³. 50.00 cm³ of this solution boiled with excess Fe³* solution. The resulting solution required 12.0 cm² of 0.02 mo KMnO₄ solution for complete oxidation of Fe²* (N = 14, O = 16, H = 1) I. Write balanced ionic equation for the reaction between Fe²* and MnO₄* II. Calculate the amount of KMnO₄ used for the complete oxidation of Fe²*. III. What is the amount of Fe²* present in the solution. IV. What is the amount of NH₂OH present in 1 dm³ i) The compound IPO₄ reacts in aqueous medium to form IO₃* and H₂PO₃* in accordance in the oxidation half reaction. ii) Write the reduction half reaction. iii) Write balanced ionic equation. 	. ,	ucts of reaction between hydroxyl amine (NH ₂ OH) and Fe NH ₂ OH + Fe ³⁺ → N ₂ O + Fe ²⁺ + I					
(iii) Balance the above equation. v) A 10 cm³ sample of hydroxyl amine was diluted to 1 dm³. 50.00 cm³ of this solution boiled with excess Fe³ solution. The resulting solution required 12.0 cm³ of 0.02 mo KMnO₄ solution for complete oxidation of Fe²* (N = 14, O = 16, H = 1) I. Write balanced ionic equation for the reaction between Fe²* and MnO₄ II. Calculate the amount of KMnO₄ used for the complete oxidation of Fe²*. III. What is the amount of Fe²* present in the solution. IV. What is the amount of NH₂OH present in 1 dm³ i) The compound IPO₄ reacts in aqueous medium to form IO₃ and H₂PO₃ in ac medium. i) Write the oxidation half reaction.	(i)	Write oxidation half ionic equation.	· .			.:	• • •
v)A 10 cm³ sample of hydroxyl amine was diluted to 1 dm³. 50.00 cm³ of this solution boiled with excess Fe³+ solution. The resulting solution required 12.0 cm³ of 0.02 mo KMnO₄ solution for complete oxidation of Fe²+ (N = 14, O = 16, H = 1) I. Write balanced ionic equation for the reaction between Fe²+ and MnO₄ II. Calculate the amount of KMnO₄ used for the complete oxidation of Fe²+. III. What is the amount of Fe²+ present in the solution. IV. What is the amount of NH₂OH present in 1 dm³ i) The compound IPO₄ reacts in aqueous medium to form IO₃ and H₂PO₄ in ac medium. i) Write the oxidation half reaction.	(ii)	Write the reduction half ionic equation.					,
boiled with excess Fe ³⁺ solution. The resulting solution required 12.0 cm ³ of 0.02 mo KMnO ₄ solution for complete oxidation of Fe ²⁺ (N = 14, O = 16, H = 1) I. Write balanced ionic equation for the reaction between Fe ²⁺ and MnO ₄ II. Calculate the amount of KMnO ₄ used for the complete oxidation of Fe ²⁺ . III. What is the amount of Fe ²⁺ present in the solution. IV. What is the amount of NH ₂ OH present in 1 dm ³ i) The compound IPO ₄ reacts in aqueous medium to form IO ₃ and H ₂ PO ₄ in as medium. i) Write the oxidation half reaction.	(iii)	Balance the above equation.					
 III. What is the amount of Fe²⁺ present in the solution. IV. What is the amount of NH₂OH present in 1 dm³ i) The compound IPO₄ reacts in aqueous medium to form IO₃ and H₂PO₄ in acmedium. i) Write the oxidation half reaction. ii) Write the reduction half reaction. 	boile KMn	d with excess Fe^{34} solution. The resulting solution O_4 solution for complete oxidation of Fe^{2+} (N = 14	require , O = 1	ed 12 6, H =	2.0 cm = 1)	n ³ of 0.	olution 02 mol
 IV. What is the amount of NH₂OH present in 1 dm³ i) The compound IPO₄ reacts in aqueous medium to form IO₃ and H₂PO₄ in acmedium. i) Write the oxidation half reaction. ii) Write the reduction half reaction. 	II.	Calculate the amount of KMnO ₄ used for the comp	lete ox	idatio	n of F	e ²⁺ .	
 i) The compound IPO₄ reacts in aqueous medium to form IO₃ and H₂PO₄ in acmedium. i) Write the oxidation half reaction. ii) Write the reduction half reaction. 							
 i) The compound IPO₄ reacts in aqueous medium to form IO₃ and H₂PO₄ in accommedium. i) Write the oxidation half reaction. ii) Write the reduction half reaction. 	111.	What is the amount of Fe ²⁺ present in the solution.					
 i) The compound IPO₄ reacts in aqueous medium to form IO₃ and H₂PO₄ in acmedium. i) Write the oxidation half reaction. ii) Write the reduction half reaction. 	IV.						
medium. i) Write the oxidation half reaction. ii) Write the reduction half reaction.							
ii) Write the reduction half reaction.							
		-	form	103	and	H₂FO₄	m ac
	me	edium.	form	IO ₃	and	H ₂ FO ₄	m ac
	me i)	Write the oxidation half reaction. Write the reduction half reaction.		103	and	H ₂ PO ₄	m aci

Chemistry - Dulan Madurange දහුළු මලින්න - එහෙන විදුවර Chemistry - Dulan Madurange දහුළු මලින්න - එහෙන විදුවර Chemistry - Dulan Madurange දහුළු මලින්න - එහෙන විදුවර Chemistry - Dulan Madurange දහුළු මලින්න - එහෙන විදුවර Chemistry - Dulan Madurange දහුළු මලින්න - එහෙන විදුවර Chemistry - Dulan Madurange දහුළු මලින්න - එහෙන විදුවර ලින්න විදුවර දහුණු විදුවර - එහෙන විදුවර ලින්න විදුවර ලින්න විදුවර - එහෙන විදුවර ලින්න විදුවර ලින්න විදුවර - එහෙන විදුවර ලින්න විදුවර ලින්න විදුවර - එහෙන විදුවර ලින්න විද

Universal gas constant $R = 8.314 \,\mathrm{J \, K^{-1} \, mol^{-1}}$

Plank's constant $h = 6.626 \times 10^{-34} \text{J s}$

Avogadro constant $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Velocity of light $c = 3 \times 10^8 \text{m s}^{-1}$

Part II- B Essay

Answer all the Questions.

3). a) Successive ionization energy values of the elements usuned A, B, and C are mentioned the following table in kJ mol⁻¹.

Element	1 st ionization	2 nd ionization	3'd ionization	4th ionization
	energy /	energy/ LI mol ⁻¹	energy/	energy / kJ mol ⁻¹
A	900	1800	15000	20000
В	800	2500	3600	25000
C	580	1800	2800	11000

- i) Identify the groups above A, B, and C elements. Briefly explain the reason for your identification.
- ii) If these elements are in second and third periods, identify these elements.
- Write the chlorides formed by above A and E elements and state their geometric shapes. Statethe hybridization of each element.
- b) i) NH₃, CCl₄, CH₃CH₂OH, CHCl₃, Ar, H₂S, NH₄Cl, H₃O⁺, MgCl₂.

 Which of the above substances contain following secondary interactions?
 - I. Dipole Dipole forces
 - II. Hydrogen bonds
 - III. London dispersion forces
 - IV. Dative bonds
 - V. Ionic bonds
 - ii) Arrange Mg(NO₃)₂, Ca(NO₃)₂, Sr(NO₃)₂, and Ba(NO₃)₂ in the increasing order of decomposition temperature. Explain your answer in associated with Polarizability.
 - iii) Deduce the geometric shapes of following ions using VSEPR theory.
 - I. PO43-
 - II. NO
 - MI. ICl2

- c). Write balanced ionic equations for following reactions.
 - (i) $Fe^{2^{4}} + MnO_{4} + H^{4} \rightarrow + Mn^{2^{4}} + Fe^{3^{4}}$
 - (ii) OH + Al + NO₃ \rightarrow AlO₂ + NH₃
 - (iii) $H^{+} + H_{2}O_{2} + Cr_{2}O_{7}^{2} \rightarrow Cr^{3+} + O_{2}$
- 4). a) 10 g of a sample containing MgCl₂ and CaCO₃ was dissolved in 200 cm³ of 2 mol dm⁻³ HCl solution. Then this solution was diluted up to 250 cm³ by adding distilled water. 25.0 cm³ portion of this solution was reacted with 1 mol dm⁻³ NaOH solution. Volume of NaOH spent was 35.5 cm³. Calculate the mass percentage of CaCO₃ in the sample. (Ca = 40, C = 12, O = 16)
 - b) Organic compound named A contains 48.65% of C, 8.11% of H according to mass. The rest is oxygen. (C = 12, H = 1, O = 16)
 - i) Find the empirical formula of compound of A.
 - ii) Find the molecular formula of A.
 - iii) If A contains a -COOH group, draw the structure of A.
 - c) Solar radiation with 325 nm wavelength is bad for human skin. Calculate the following regarding this radiation.
 - i) Frequency of the radiation.
 - ii) Energy of a photon of the radiation.
 - iii) Energy of one mole of photons.
 - iv) Identify the region of the electromagnetic spectrum to which this radiation belongs.
 - y) State two uses of this radiation.