gyd වඩුරම - රණයක ව්යුවට Chemistry - Dulan Madus ng gyd වඩුරම - රණයක ව්යුවට Chemistry - I ළගාන් මේක්ර gyd වඩුරමේ - රණයක ව්යුවට Chemistry - I ළගාන් මේක්ර	ාංග- රසායන විදනව විතාග ම Special Online Speed Test	ට්රිස්ථානය බස්ථානය Madurange දැන් මටුරුම - රජාගම ව වස්ථානය Madurange දැන් මටුරුම - රජාගම ව
අධ්යයන	පොදු සහතික පතු (උසස් පෙළ), 2023 Of Education (Adv. Level) Exami	අගෝස්තු
රසායන විදහාව I Chemistry I	02 S/E I	$2^{1/2}$ Hours

Avogadro constant $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Velocity of light $c = 3 \times 10^8 \text{m s}^{-1}$

Monthly Evaluation Test - 2021 July

Part I- MCQ

**	Answer	all	the	Questions.
	AllSWCI	an	unc	Quesuons.

- **Do not use Calculators or any other Notes.**
- **Submit your Answer script (including Rough works) in PDF Form.**
- Properties of the elements are characterized by their atomic numbers. The scientist who 1. contributed to the finding of atomic numbers of elements is
 - 1) Rutherford
- 2) Chadwick
- 3) Mosley
- 4) Thomson 5) Henry Becqurel
- 2. The effective nuclear charge which is felt by the one valence electron of Magnesium (Mg) is ?
 - (1) Greater than that of Sodium (Na)
- (2) Equal to +1
- (3) Equal to +12

- (4) Greater than that of Aluminium (Al)
- (5) Equal to +24
- The sets of quantum numbers corresponding to the last two electrons of an element are, 3. $(4,0,0,+\frac{1}{2})$, $(3,2,-1,+\frac{1}{2})$. The suitable element is.
 - 1) Ca
- 2) K
- 3) Cr
- 4) Mn
- 5) Sc
- Which of the following has a positive value for its electron gaining energy.
 - 1. Li
- 2. Be

3. B

- 4. O
- 5. K

- Which of the following statement is correct?
 - 1. In Hydrogen atom n = 1 \leftarrow n = 7 electron transfer has the highest energy.
 - 2. Longest wavelength radiation present in Lyman series in a H spectrum.
 - 3. In H spectrum Lowest energy radiation present in Lyman series.
 - 4. In H spectrum shortest wavelength radiation present in Paschen series.
 - 5. In H spectrum wavelength range in visible region is 200 500 nm.

	6.	Energy of one mole	of photon which has a way	re length of 5 x 10^{-2} nm is,
--	----	--------------------	---------------------------	-----------------------------------

- 1. $3.98 \times 10^{-15} J$
- 2. $3.98 \times 10^{-17} \text{ J}$

3. $29.69 \times 10^5 \text{ KJ}$

- 4. $23.96 \times 10^4 \text{ KJ}$
- 5. $23.96 \times 10^5 \text{kJ}$
- 7. The total number of elements presents in the seventh period of the periodic table (Which has a total number of elements 113) are,
 - (1)8
- (2) 18
- (3) 2
- (4) 32
- (5)27

Electron	Set of quantumn numbers
1	(4, 1, 0, +1/2)
2	(4, 0, 0, +1/2)
8 3	(3, 2, 1, +1/2)
4	(3, 1, 1, +1/2)

The energy of the four electrons increase in the order.

- (1) 4 < 2 < 3 < 1
- (2) 2 < 4 < 1 < 3
- (3) 1 < 3 < 2 < 4

- (4) 3 < 1 < 4 < 2
- (5) 1 < 2 < 3 < 4
- 9. The increasing order of first ionization enthalpies of the elements N, F, Ar, Cl, Al and K is
 - (1) K < Al < Cl < Ar < N < F
- (2) K < Al < Ar < Cl < N < F
- (3) K < Al < Cl < N < F < Ar

- (4) K < Al < N < F < Cl < Ar
- $(5) \ K < Al < Cl < N < A \ r < F$
- 10. Which of the following set of quantum number is **not possible** for the valence electron of the most stable ion of Sc?
 - $(1)(3,2,-1,+\frac{1}{2})$

(2) (3,0, 0, $+\frac{1}{2}$)

 $(3)(3,1,0,-\frac{1}{2})$

 $(4)(3,1,-1,+\frac{1}{2})$

- $(5)(3,0,0,-\frac{1}{2})$
- Oxidation number and valency of carbon atoms in C₂H₂ molecule respectively are,
 - 1) -1 and 4
- 2) +1 and 4

3) -1 and 1

4) +1 and 1

- 5) -4 and 4
- Ascending order of ionic radius of the following species is correctly given by.
 - 1) $O^2 < F < Na^+ < Mg^{2+}$

2) $Na^+ < Mg^{2+} < O^{2-} < F^-$

3) $Mg^{2+} < Na^+ < F^- < O^{2-}$

4) $F^- < O^{2-} < Na^+ < Mg^{2+}$

5) \cdot Na⁺ < Mg²⁺ < F⁻ < O²⁻

- Which statement/s is/are true regarding γ rays emitted during nuclear reactions,
 - a) Their ionization power is higher than that of α rays.
 - b) They have the speed of light in vacuum
 - c) They do not deflect in magnetic and electric fields.
 - d) They are electromagnetic radiations.

14.

$$N \equiv C_1 - \begin{matrix} H & O \\ C_2 - C_3 - O - H \\ H \end{matrix}$$

Hybridization of C₁, C₂ and C₃ are correctly shown by,

	C_1	C_2	C_3
1)	sp	sp ³	sp
2)	sp	sp^3	sp ³
3)	sp ³	sp ³	sp ²
4)	sp ²	sp^3	sp ²
5)	sp	sp ³	sp^2

15. Successive ionization energies of non transitional element A is given below.

 $I_1 - 1058 \text{ kJ mol}^{-1}$

I2 - 1345 kJ mol-1

I₃ - 4600 kJ mol⁻¹

I₄ - 6210 kJ mol⁻¹

I₅ - 37750 kJ mol⁻¹

I₆ - 47100 kJ mol⁻¹

Two oxides formed by A can be,

- 1) A₂O₃ and A₂O
- 2) AO₂ and A₂O₄
- 3) A₂O₃ and A₂O₄

- 4) AO and AO₂
- 5) AO and A2O

							1	he P	erio	dic T	able						277	
1	1 H																	2 He
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	0	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg		-									Al	Si	P	S	CI	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51 -	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	1
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	1

අධ්නයන පොදු සහතික පතු (උසස් පෙළ), 2023 අගෝස්තු General Certificate Of Education (Adv. Level) Examination, August 2023	දියුත් මධ්රයේ - රජාගය විදුහර Chemistry - Dulan Madus na දියුත් මධ්රයේ - රජාගය පිදුහර Chemistry - I E ලාජා කම්වර දැන් මධ්රයේ - රජාගය පිදුහර Chemistry - I E ලාජා කාලයේ	ry Dulan Madurange god මුදුර වෙන වනව Chemistry Dulan Madurange god මුදුර වනව වනව Chemistry Dulan Madurange god මුදුර ගත- රසායන විදහාව විතාග මධ්පස්ථානය Madurange god මුදුර වනවේ වනව Special Online Speed Test වන Chemistry Dulan Madurange god මුදුරට වනවේ දියාව මෙන Special Online Speed Test
රසායන විදහාව I)	දැගේ මධ්රයට - රසාගත විසාව Chemistry - Dulan Madurange දැගේ මධ් අධ්යයන (_{රිස} ් විය Series Chemistry - Dulan Madurines read Sizion - Series Chemistry - Dulan Madurines and Sizion - Series Best පොදු සහතික පතු (උසස් පෙළ), 2023 අගෝස්තු
Chemistry I 02 S/E I	රසායන විදාහාව I Chemistry I	02 S/E I

Part II- A- Structured Essay

Avogadro constant $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Velocity of light $c = 3 \times 10^8 \text{m s}^{-1}$

***** Answer all the Questions

1. a) A, B and C are experimental observations. Given against each of them are some explanations provided by students for these observations. Of these explanations given for each observation, one or more may be correct.

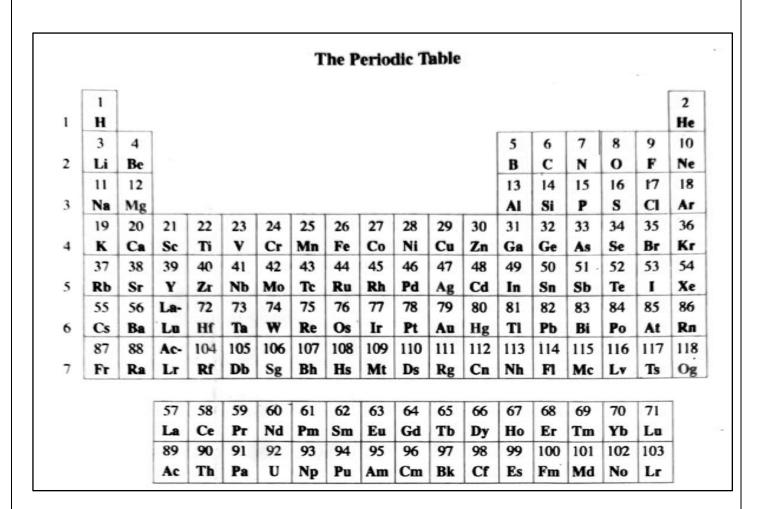
Evaluate these explanations by

- i) Marking in the appropriate box a I if, in your opinion,
- ii) Marking in the appropriate box a
 if, in your opinion, the explanation is invalid.

	Experimental observation.	Students' Explanation
A	When a beam of α particles falls on a thin gold plate,	The gold plate contains spaces which are large compared with the size of α particles.
	most of the α particles pass undeflected through the plate.	The gold plate is non continuous.
	place.	The path of α particles is always linear.
В	A paddle wheel placed in the	Cathode rays are negatively charged.
	path of cathode rays rotates.	Cathode rays have particle – like properties.
		Material of the paddle wheel is continuous.
C	The electronic emission spectrum of hydrogen	There are definite energy levels for the electrons in the H – atom.
	consists of several series of lines, in each series, the separation between the lines decreases as the frequency increases.	The energy corresponding to each line in the spectrum is equal to the energy of an electronic
		level of hydrogen.
	mercases.	The energy of the electron decreases with increasing radius of the atomic shell.
		The energy difference between successive levels decreases as the energy of the electronic levels increases.

	Which element	has the least cov	alent radiu	s?		***************************************			
	Which element	t has the least seco	ond ionizat	ion ene	rgy?				
)	Which element	t can act as the str	ongest red	ucing ag	gent?	-			
)		t/s form compour				electro	n octet?)	
,		t is used in filling			Ü				
۱n	atomic orbital	is described by t	three quan	tum nu	mbers	n, l an	d <i>m_I</i> .		
	te the appropria	ate quantum numi	bers and th	he name	e of the	e atomi	c orbita	l in the	e boxes
	n	1	m_l		atomic	orbital	l		
I.			+1		3 <i>p</i>	2.			
II.	3	2	-2						
				_					
Ш					23	7			
The	following table	aires the energy	of an alas	tron wh	on it ov	icte in t	ha princ	oinal an	orov lo
hyc	drogen atom. (Th	e gives the energy ne energy ralues an on at an infinite ene	re assigned	negativ	e sign i	n accord	dance w		
hyd ene	drogen atom. (Th	ne energy ralues an on at an infinite ene	re assigned	negativ	e sign i	n accord	dance w		
hyd ene Pr	drogen atom. (Thergy of an electro	ne energy ralues and at an infinite energy reluced (n)	re assigned ergy level f	negativ rom the	e sign i neucleu	n accord s is zero	dance w	ith conv	rention
hyd ene Pr En	drogen atom. (The ergy of an electron rincipal energy leadings of the electron	ne energy ralues and at an infinite energy reluced (n)	re assigned ergy level f	negative rom the	re sign in neucleu 3 -145	n accords is zero 4 -80	5 -52	ith conv	vention 7
hyd ene Pr En	drogen atom. (The ergy of an electron rincipal energy leadings of the electron	ene energy ralues and an at an infinite energy revel (n) ron / kJ mol ⁻¹	re assigned ergy level f	negative rom the	re sign in neucleu 3 -145	n accords is zero 4 -80	5 -52	ith conv	vention 7
hyd ene Pr En	drogen atom. (The ergy of an electron rincipal energy leadings of the electron	evel (n) ron / kJ mol ⁻¹ of the emission spe	re assigned ergy level f	negative rom the	re sign in neucleu 3 -145	n accords is zero 4 -80	5 -52	ith conv	vention 7
Pr En Two	drogen atom. (The ergy of an electronic rincipal energy length of the electronic series of lines of S R are D is violet in C	evel (n) of the emission special of the emission of t	re assigned ergy level f 1 -1311 ectrum of h	negative rom the 2 -327 ydrogen	se sign in neucleu 3 -145 n are sho	accords is zero 4 -80 own belo	5 -52	ith conv	vention 7
Pr En Two	drogen atom. (The ergy of an electronic rincipal energy length of the electronic series of lines of S R are D is violet in C	e energy ralues and an at an infinite energy ralues and an infinite energy ralues and an at an infinite energy ralues and an at an infinite energy ralues and at an infinite energy ralues are supported by the emission specific properties of the emission specific properties are supported by the emission of the	re assigned ergy level f 1 -1311 ectrum of h	negative rom the 2 -327 ydrogen	se sign in neucleu 3 -145 n are sho	accords is zero 4 -80 own belo	5 -52	ith conv	vention 7
Pr En Two	drogen atom. (The ergy of an electronicipal energy length of the electronicipal energy of the electronic energy energ	evel (n) ron / kJ mol ⁻¹ of the emission special production of the series to when the energy ralues are the	re assigned ergy level f 1 -1311 ectrum of h C B A	negative rom the 2 -327 ydrogen	se sign in neucleu 3 -145 are sho	accords is zero 4 -80 own below	5 -52	6 -36	7 -24
Pr En Two	drogen atom. (The ergy of an electronicipal energy length of the electronicipal energy of the electronic energy energ	evel (n) of the emission special of the emission of t	re assigned ergy level f 1 -1311 ectrum of h C B A	negative rom the 2 -327 ydrogen	se sign in neucleu 3 -145 are sho	accords is zero 4 -80 own below	5 -52	6 -36	7 -24
Pr En Two	drogen atom. (The ergy of an electronicipal energy length of the electronicipal energy of the electronic energy energ	evel (n) ron / kJ mol ⁻¹ of the emission special production of the series to when the energy ralues are the	re assigned ergy level f 1 -1311 ectrum of h C B A	negative rom the 2 -327 ydrogen	se sign in neucleu 3 -145 are sho	accords is zero 4 -80 own below	5 -52	6 -36	7 -24
Pr En Two	drogen atom. (The ergy of an electronicipal energy length of the electronicipal energy of the electronic energy energ	evel (n) ron / kJ mol ⁻¹ of the emission special production of the series to when the energy ralues are the	re assigned ergy level f 1 -1311 ectrum of h C B A	negative rom the 2 -327 ydrogen	se sign in neucleu 3 -145 are sho	accords is zero 4 -80 own below	5 -52	6 -36	7 -24

(iv)	What is the frequency of the radiation relevant to the violet line?
(17)	What is the frequency of the radiation relevant to the violet line?
(v)	What is the first ionization energy of a hydrogen atom?
Λ,	range the given property in ascending order.
	N, O, Si, F Electro negativity
ii)	Na, Cl, P, Al 1st ionization energy
iii)	B, N, F, Li Atomic radius
iv	Mg ²⁺ , O ² , Na ⁺ , F (ionic radius)
	wig, O, iva, r (ionic radius)
	······································
V)	LiBr, NaBr, KBr, RbBr (ionic property)
Vi	B, C, N, O (first electron affinity)
	마음이 되는 것이 되었다. 이 경기에 가장 보고 있는 것이 되었다. 그런 사람들이 되었다. 그런 것이 되었다.
vii) CH. CH.CL HCHO HCN (alestes resolving a feedback)
) CH ₄ , CH ₃ Cl, HCHO, HCN (electro-negativity of carbon)


c) Consider the skeleton given below.

Details of one of the lewis structure for the above molecule is given below.

Atom	Na	N _b	Oa	Ob
Hybridization	sp ³	sp ²	sp3	sp ²

i)	Draw the Lewis structure of NH ₂ NO ₂ which suits to the data given.

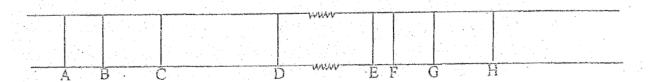
Universal gas constant $R = 8.314 \,\mathrm{J \, K^{-1} \, mol^{-1}}$

Plank's constant $h = 6.626 \times 10^{-34} \text{J s}$

Avogadro constant $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Velocity of light $c = 3 \times 10^8 \text{m s}^{-1}$

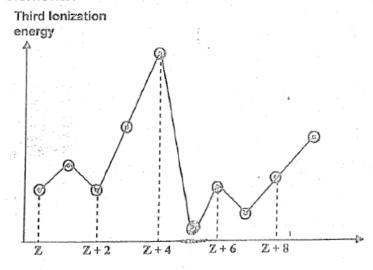
Part II- B Essay


Answer all the Questions.

3.. a) Complete the follow given table considering the Atoms A,B,C,D,E,F and G.

Atom	Valency	Charge	Hybridization	Oxidation Number	Number of Lone pairs	Number of Bonds
A						
В						
С						
D						
Е						
F						
G						

b) A source which emits a range of radiation including above radiation upto 700nm is given to excite electron in hydrogen gas sample.


When electrons in higher energy levels come back to lower energy levels, spectrum corresponds to those is given in below diagram.

In above spectrum A, B, C and D are in same region as wave length of radiation E, F, G and H are in wave length in range of 400 - 700nm.

In above 8 spectral lines, draw corresponding electron transition using arrows considering first 6 electronic energy level. (label your diagram with A,B,C,D and E,F,G,H and series names.

A, B, C, D, E, F, G, H, I and J are successive elements belonging to second and third periods of the periodic table. Following graph gives third ionization energies of those elements.

(a) (i) Identify elements from A to J

(ii) Identify elements belonging to same group.

4. a) The following table represent the values of the successive standard molar ionization energies of an element X.

Molar	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th
ionization	1400	2880	4520	7450	9450	53000	64200
energy in							
kJmol ⁻¹							

- I. What is meant by the first ionization energy?
- II. To what group in the periodic table should element X be assigned? Explain your answer.
- III. Write the all possible stable oxidation numbers for element X.
- IV. If the element X of atomic number less than 20, does not exist as gas. Identify the element and write the electronic configuration.
- V. Write the molecular formula for element X formed oxide the higher oxidation state.

(b)	(i)	Write down electronic configuration of y2+ ion formed by Y which has atomic
		number 28
	(ii)	How many unpaired electrons are present in Y ²⁺ ion.
	(iii)	Write down quantum number series for electrons present in last sub energy
		level of Y.

- c) Write balanced equations for the following nuclear reactions.
 - (i) when ⁹₄Be is bombarded with an alpha particle [⁴₂He], ¹²₆C is made by removing a neutron [¹₀n]
 - (ii) 60 co emits gamma rays and a beta particle to form 60 Ni.
 - (iii) $^{232}_{90}$ Th emits gamma rays [γ] and an alpha particle to form $^{228}_{90}$ Ra.
 - (iv) formation of ${}^{14}_{7}$ N by removing a beta particle $[{}^{0}_{-1}\beta]$ from ${}^{14}_{6}$ C.

******* Monthly Evaluation Test – July, 2021 ****************