සියලු ම හිමිකම ඇලිරිණිA([Rights Reserved]
Earry මැගලය කොහැ (0. රකා වරුගලා ලොකුරු විද්යාලය සම්බන්ධ සම්බන්ධ විද්යාලය සමාජය (0. රියාන් මැගලය සමාජය (0. රියාන් මහාජය (0.
🤾 🗽 අධායන පොදු සහතික පතු (උගස් පෙළ) විභාගය
General Certificate of Education (Adv. Level) Examination
තයන විදහාව I
* This paper consists of 8 pages. (Periodic table is provided.) * Answer all the questions. * Use of calculators is not allowed. * Write your index number in the space provided in the answer sheet. * Follow the instructions given on the back of the answer sheet carefully. * In each questions 1 to 50, pick one of the answer sheet with a cross (x) in accordance with the instructions given the back of the answer sheet.
Universal gas constant, R = 8.314 J mol K Ayogadro constant N _A = 6.022 x 10 ²³ mol Plank's constant h = 6.626 x 10 ⁻³⁴ Js Velocity of light C = 3 x 10 ⁸ ms ⁻¹
(1) The mass of one atom of $^{120}_{50}$ X is (1) 1.7×10^{-27} kg (2) 2.0×10^{-26} kg (4) 0.5 kg (5) 1.2×10^{-3} kg
 (2) The correct arrangement of ascending order of the second ionization energy of Al, Si, P, S and Cl is, (1) Al<p <="" <si<s="" cl<="" li=""> (2) Cl<s<p<si<al< li=""> (3) Si<al<p<s<cl< li=""> (4) Al<si<s<p<cl< li=""> (5) Al<p<s<si<cl< li=""> </p<s<si<cl<></si<s<p<cl<></al<p<s<cl<></s<p<si<al<></p>
(3) Element does not that form an ionic hydride with H ₂ gas is, (1) Li (2) Be (3) Na (4) Ca (5) K
 (4) Two molecules of He and O₂ are moving at high speed. The speed of He is 4 times higher than the speed of O₂. The ratio of wavelengths of He and O₂ is, (O=16, He=4) (1) 1:1 (2) 2:1 (3) 1:2 (4) 3:4 (5) 4:
(5) Select the correct enthalpy change and the symbol,
$(1) H_{2(g)} \to 2H_{(g)}; \DeltaH^{\theta}_{atm(H_{2}(g))}$
(2) $Al_{(g)}^{3+} + aq \rightarrow Al_{(aq)}^{3+}$; $\Delta H_{sol(Al^{3+}(g))}^{\theta}$
(3) $Na_{(s)} \rightarrow Na_{(g)}^{+} + e; \Delta H_{j_1(Na(s))}^{\theta}$
(4) $H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow H_{2}O(g)$; $\Delta H_{c(H_{2}O(g))}^{\theta}$
(5) $K_{(s)} \rightarrow K(g)$; $\Delta H^{\theta}_{atm(K(s))}$
(6) Mass percentage of HCl in an aqueous conc. HCl solution is 36%. The mass of HCl in 100g of solution is, (1) 50.2e (2) 56.25g (3) 36g (4) 54.5g (5) 102.8g

	Y	(4) Na ₂ O (5) Na ₂ SO ₄
	18 1	(1) Na ₂ CO ₃ (2) NaHCO ₃ (3) NaNO ₃
	(15)	The substance which produce two products when heating is,
		(4) $3.2 \times 10^5 \text{ Nm}^{-2}$ (5) $4.3 \times 10^5 \text{ Nm}^{-2}$
		(1) $2.5 \times 10^5 \text{ Nm}^{-2}$ (2) $2.8 \times 10^5 \text{ Nm}^{-2}$ (3) $3.0 \times 10^5 \text{ Nm}^{-2}$
		container at 3×10 ⁵ Nm ⁻² pressure. The total pressure of the gas mixture is (No temperature change after mixing and gases are not reacting each other) (N=14, H=1)
	(14).	4 dm³ volume of hydrogen gas container at 2×10 ⁵ Nm² is connected with 2 dm³ volume of nitrogen gas
	(13)	Which of the following molecule is non polar? (1) $SO_2C\ell_2$ (2) $CH_2C\ell_2$ (3) XeF_2 , (4) IF_3 (5) SF_4
		sample is heated until to get a constant weight of $1.12g$. The percentage of SiO_2 in the sample is, (Ca=40, Mg=24, Si=28, O=16) (1) 5% (2) 6.5% (3) 6.9% (4) 7.2% (5) 8%
	(12)	The ratio of MgCO ₃ and CaCO ₃ in a dolomite sample is 1:1. SiO ₂ remains as an impurity, 2.0g of this
		(5) All hydroxides of alkaline metals react with ammonium salts to give a gas which turns red litmus in to blue.
		(4) All carbonates of alkaline metals react with dilute acids to form CO ₂ gas.
		(2) All oxides of alkaline earth metals are basic.(3) All carbonates of alkaline metals are basic.
		(1) All hydroxides of alkaline metals are strongly basic.
	(11)	Which of the following statement is incorrect about basicity of s block compounds?
		(1) 1:4 (2) 2:1 (3) 1:2 (4) 4:1 (5) 1:8
	(10)	The ratio of the root mean square speed of He and the root mean square speed of CH ₄ is at same temperature (He-4, C-12, H-1)
0.1	. n	(1) 1.96 (2) 0.98 (3) 19.6 (4) 9.8 (5) 39.2
	. ,	$mol \ kg^{-1} \ (N=14, \ H=1)$
	(9)	The density of 13.4 moldm ⁻³ ammonia solution is 0.91 g cm ⁻³ . The composition of the solution in
	·-	hydration. (5) Entropy is an example for a state function.
		solution form in the presence of an excess amount of water is called standard enthalpy of
		(4) The enthalpy change that occur when I mol of ions under the standard state changes in to the
		(2) The properties that depend upon the amount of matter are named as extensive properties.(3) The enthalpy change of a reaction is not independent of pressure.
		(1) Standard entropy value of H ion of Imoldm ³ is considered to be zero at standard state.
	(8)	Which of the following statement is incorrect?
		(4) $P_{SO_2} = 6P_{CH4}$ (5) $P_{SO_2} = 8P_{CH_4}$

The mass ratio of SO2 and CH4 gases in a gas cylinder is 1:2. The relationship of partial pressures of two

(2) $P_{SO_2} = 2P_{CH_4}$

(7)

gases is, (S=32, O=16, C=12, H=1)

(1) $P_{SO_2} = P_{CH_4}$

(24)	Which of the following is true about 2 nd group elements in the periodic table?
.*.	 (1) All chlorides are ionic. (2) Thermal stability of carbonates decrease down the group. (3) Water solubility of hydroxides increase down the group. (4) Formed bicarbonates can be obtained in solid state. (5) Metallic nitrite and oxygen are formed by thermal decomposition of metallic nitrates.
(25)	The mass of solid residue when 2.68 g of $Na_2C_2O_4$ solution reacts with excess amount of KMnO ₄ solution at basic medium. (Mn = 55, O = 16, C= 12, Na= 23)
	(1) 1.0 g (2) 1.12 g (3) 1.16 g (4) 2.61g (5) 1.74 g
(26)	Certain reaction is spontaneous at 298 K and 80 kPa pressure. The reaction is nonspontaneous at high temperature and same pressure. Which of following is true? \[\text{\Delta G} & \Delta H & \Delta S \] (a) + (b) - + + + (c) + + + (d) (1) Only a (2) Only b (3) Only d (4) Only a and d (5) Only b and d
(27)	The composition of O_2 of an aqueous solution is 7.8ppm at room temperature. O_2 should be removed from this solution and O_2 can be removed by adding $Na_2SO_3(aq)$ and reaction is given below. (Na=23, S=32, O=16) $Na_2SO_3(aq) + O_2(aq) \longrightarrow Na_2SO_4(aq)$ (Not balanced)
	The amount of $Na_2 SO_4$ formed when removing O_2 from 8.0 m³ water sample, using $Na_2 SO_3$ is, ($Na=23$, $S=32$, $O=16$) (1) 155.9 g (2) 175.8 g (3) 200.9 g (4) 311.9 g (5) 553.80 g
(28)	The correct descending order of the solubility of following salts is, (1) BaSO ₄ > SrSO ₄ > CaSO ₄ > MgSO ₄ (2) BaSO ₃ > CaSO ₃ > MgSO ₃ > BeSO ₃ (3) Ba(OH) ₂ > Mg(OH) ₂ > Ca(OH) ₂ > Be(OH) ₂ (4) Ba(OH) ₂ > Ca(OH) ₂ > Mg(OH) ₂ > Be(OH) ₂ (5) BaSO ₃ > MgSO ₃ > CaSO ₃ > BeSO ₃
(29)	40% (w/w) of propane is present in a mixture of propane (C_3H_8) and butane (C_4H_{10}). When the gas mixture is compressed to 1×10^6 Nm ⁻² pressure, the partial pressures of propane and butane are, (×10 ⁵ Nm ²) C= 12, H= 1
	(1) 3.4 and 5.3 (2) 3.4 and 5.6 (3) 4.5 and 6.2 (4) 4.7 and 6.4 (5) 4.8 and 7.2
(30).	The correct ascending order of atomic radius of N, O, F, Si and Cl is.
	(1) F < O < Si < N < CE (2) F < O < N < CE < Si (3) F < N < O < Si < CE (4) N < O < F < Si < CE (5) F < O < N < Si < CE

•

. .

. .

· ·

Instructions for question no. 31 to 40.

For each of the question 31 to 40, four responses (a), (b), (c) and (d) are given. One or more of these is/are correct. Select the correct response / responses. In according to instructions given, on your answer sheet, mark.

- (1) If only (a) and (b) are correct
- (2) If only (b) and (c) are correct
- (3) If only (c) and (d) are correct
- (4) If only (a) and (d) are correct
- (5) If any other number or combination of response is correct

Summary of above instruction.

(1)		(2)	*	(3)		(4)			(5)		
							Any combi- correc	nation		number responses	or is

- (31) Which of the following statement/s is/are true about correct procedure when measuring the volume using a burette.
 - (a) The tip of the burette should be immersed in the required solution when adjusting the level of the liquid to "0" mark.
 - (b) The burette should be washed only with distilled water before use.
 - (c) The air bubbles in the liquid present inside the burette should be removed before adjusting the level of the liquid to "0" mark.
 - (d) It is not necessary to coincide the top level of the liquid to "0" mark always, before use.
- (32) Compound/s which could be formed when a piece of Na is exposed to air?
 - (a) Na2 O
- (b) Na₂O₂
- (c) Na₃ N
- (d) Na₂ CO₃
- (33) Which of the following statement/s is /are true regarding the nature of the bond and the structure of ice?
 - (a) H2O molecules do not have kinetic energy.
 - (b) Bonds between two H2O molecules are dipole-dipole interactions.
 - (c) The bond formed between O and H present inside the H₂O molecule is a H bond.
 - (d) O-H bond present inside a H₂O molecule is broken when ice get liquefied.
- (34) The correct arrangement/s of the increasing order of bond angle is/ are,
 - (a) $CO_3^{2-} < SO_4^{2-} < NO_2^{-}$

(b) $PCl_3 < BCl_3 < .SCl_2$

(c) $H_2O < CH_4 < SO_2$

- (d) $H_3O < NO_2^- < NO_3^-$
- (35) Which of the following statement/s is /are incorrect regarding $PV = \frac{1}{3} mNC^{2}$ equation.
 - (a) Pressure of a gas is proportional to number of molecules present in unit volume at constant temperature.
 - (b) Mass of the gas can be obtained by mN
 - (c) $C^{\overline{2}}$ is the root mean square speed of the molecules of the gas.
 - (d) Total kinetic energy of molecules of the gas is equal to multiplication of PV.

(36) Concentration of an aqueous CaSO₄ solution is 1×10⁻³ moldm⁻³. Correct statement/s about the solution is/are, (Ca= 40, S=32, O=16)

- (a) concentration of the CaSO₄ solution is 40.0ppm
- (b) concentration of the SO₄²-solution is 96.0ppm
- (c) concentration of the Ca2+ solution is 40.0ppm
- (d) The mass of CaSO4 in 1dm of the solution is 136.0 g
- (37) Which of the following statement/s is /are incorrect.
 - (a) The highest third ionization enthalpy in second period is for Be.
 - (b) Radii of Rb+ is greater than the radii of Sr2+
 - (c) All hydroxides which are formed by group one elements are thermally stable.
 - (d) All nitrides which are formed by first group metals are unstable.
- (38) Which of the following statement/s is/are true about the compound formed by X in which atomic number is 33, reacting with hydrogen.
 - (a) It has formulae XH3
 - (b) It's electron pair geometry is pyramidal.
 - (c) It's non polar.
 - (d) It's melting point is less than the melting point of NH3
- (39) Which of the following statement/s is /are correct,
 - (a) AS of a spontaneous reaction always has a positive value.
 - (b) Rate of a reaction increases when enthalpy difference of a reaction has a negative value.
 - (c) For an equilibrium reaction $\Delta G = 0$.
 - (d) When considering the forward reaction of an equilibrium reaction under constant temperature, it's ΔH and ΔS could be same.
- (40) Which of the following statement/s is /are true?
 - (a) Electrons have particle nature as well as wave characteristics.
 - (b) Weight of a proton is less than that of a neutron.
 - (c) In every ion there is at least one electron.
 - (d) 3 types of subatomic particles proton, electron and neutron are present in every atom.
- Instructions for question no. 41 to 50.

In question no. 41 to 50, two statements are given in respect of each question.

From the table given below, select the response out of the responses (1), (2), (3), (4) and (5) that best fits the two statements and mark appropriatly on your answer sheet.

Response	First statement	Second Statement
(1)	True	True, and correctly explains the first statement.
(2)	True	True, but does not explain the first statement correctly.
(3)	True	False
(4)	False	True
(5)	False	False

	First statement	Second Statement
41.	H _d line has the highest wavelength of the visible region of Hydrogen emission spectrum.	The electron transition from third energy level to second energy level represented the H ₀ line of the hydrogen emission spectrum.
42.	The spontaneity of a reaction can be increased by heating a chemical system.	When heating randomness of a system increases.
43.	The shapes of $CH_2^{\dagger}C\ell$ and $CHC\ell_2$ are same.	The electron geometry of CH ₂ Cl and CHCl ₂ species are same.
44.	The basicity of 1 st group hydroxides increases down the group.	The electronegativity difference between the metal and O (M-OH) of hydroxides of first group increases down the group.
45.	KMnO ₄ aqueous solution act as an oxidising agent in both basic and acidic medium.	The oxidizing ability of KMnO ₄ depends on the medium.
46.	NH ₃ does not act as an oxidizing agent.	N atom of NH ₃ exists in the lowest oxidation state.
47.	Both Li and Mg form nitrides when reacting with nitrogen gas.	The strength of metallic lattice of Li and Mg are same.
48.	The density pressure ratio of an ideal gas at constant temperature does not depend on pressure.	Same numbers of molecules are present in same volume of gases in same temperature and pressure.
49.	Ideal gases do not obey Vander Waals equation.	There are corrections included in Vander Waals equation for real gases when they deviate from ideal conditions.
50.	Cl^+ , $C\ell$ and $C\ell^-$ are isoprotonic species.	Cl^+ , $C\ell$ and $C\ell^-$ species always have same number of neutrons.

Visakha Vidyalaya - Colombo 05 Second Term Test - April 2019 Grade -12

Chemistry II

Time: Two and half hour	Time	: Tw	o and	d half	hour
-------------------------	------	------	-------	--------	------

Name :-

Part A - Structured Essay (Pages 02-07)

*Use of calculators is not allowed.

- * Answer all the questions.
- * Write your answer in the space provided below each question.
- * Please note that the space provided is sufficient for the answer and that extensive answers are not expected.

Alkyl groups are represented in a condensed manner.

Part B Essay (Pages 8-9)

- * Answer all questions.
- * At the end of the time allocated for this paper, bind the answers together so that part A is on top and hand them over to the supervisor.
- * You are permitted to remove only Part B of the question paper from the Examination Hall.

8	Faraday constant	F	= 96500 C mol ⁻¹
	Velocity of light	C	$= 3 \times 10^8 \text{ m s}^{-1}$
	Plank's constant	h,	$= 6.626 \times 10^{-34} \text{Js}$
	Avogadro constant	NA	$= 6.022 \times 10^{23} \text{ mol}^{-1}$
	Universal gas constan	nt R	=8,314 J mot-1 K -1

For Examiner's Use only

Part	Q. NO.	Marks
	1	
А	2	
	3	
	5	
В	6	
	7	

Final Marks

In numbers	
In Letters	

		I questions. Each carries 10 marks.
1.		A. B. C. D. E. F and G are seven consecutive elements which belong to the S and P blocks of the periodic table. Out of these two or more elements are in gaseous state. Their principle quantum numbers show consecutive numbers. The highest electronegativity is shown by element D and the minimum first ionisation energy is shown by element F. Write down chemical symbols for elements A to G.
- 20		A B C
		D F F
1 1		G
	(ii)	Answer following by using real chemical symbols for above elements.
	6	(a) The element which has the highest first ionization energy
		(b) The element / elements show allotropes
22		(c) The element / elements which show the highest number of variable oxidation states.
		(d) The element which has the lowest electronegativity
	a e	(e) The element which has the highest atomic radius
	(iii)	(a) Write the chemical formula using real elements for the compound which is formed by

(b) Name the type of lattice present in the above compound.

(3.2 marks)

(b) Answer following questions using the following skeleton A.

P, Q, R and X are not real symbols of elements and their principle quantum number is the same. P, Q, R and X could be same atoms or not. The electronegativity of element X is higher than the electronegativity of R.

The hybridization and shapes around P, Q, R elements are as follows.

atom	P	Q .	K 3
hybridization	sp.	sp	sp
shape	Tetrahedral	Pyramidal -	Trigonal planer

(iii) Draw the most acceptable Lewis structure for above skelet (iiii) Draw two resonance structures for above Lewis structure (iiiii) Draw two resonance structures for above Lewis structure (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	on with real symbol	
(iii) Draw the most acceptable Lewis structure for above skelet (iiii) Draw two resonance structures for above Lewis structure (iiiii) Draw two resonance structures for above Lewis structure (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	on with real symbol	
(iii) Draw the most acceptable Lewis structure for above skelet (iii) Draw two resonance structures for above Lewis structure (iii) Indicattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that		
(iii) Draw two resonance structures for above Lewis structure (State whether following statements are true or false. Give reas (i) Ionic lattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that		
(iii) Draw two resonance structures for above Lewis structure (State whether following statements are true or false. Give reas (i) Ionic lattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that		
s) State whether following statements are true or false. Give reas (i) Ionic lattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that	except the one draw	'n in part (ii))
s) State whether following statements are true or false. Give reas (i) Ionic lattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that	except the one draw	n in part (ii))
s) State whether following statements are true or false. Give reas (i) Ionic lattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that	except the one draw	n in part (ii))
s) State whether following statements are true or false. Give reas (i) Ionic lattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that	except the one draw	n in part (ii))
s) State whether following statements are true or false. Give reas (i) Ionic lattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that	except the one draw	n in part (ii))
s) State whether following statements are true or false. Give reas (i) Ionic lattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that	except the one draw	n in part (ii))
s) State whether following statements are true or false. Give reas (i) Ionic lattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that	except the one draw	n in part (ii))
(i) Ionic lattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that		
(i) Ionic lattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that		
(i) Ionic lattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that		
(i) Ionic lattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that		
(i) Ionic lattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that		
(i) Ionic lattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that		
(i) Ionic lattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that		2
(i) Ionic lattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that		2 1
(i) Ionic lattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that		
(i) Ionic lattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that		
(i) Ionic lattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that		
(i) Ionic lattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that		
(i) Ionic lattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that	e el	(3.8 marks)
(i) Ionic lattices are more liable to get dissolve in water not. (True / False) (ii) Hydrogen bond strength of HF is higher than that		
not. (True / False) (ii) Hydrogen bond strength of HF is higher than that		
not. (True / False) (ii) Hydrogen bond strength of HF is higher than that	while atomic lattice	es are.
(ii) Hydrogen bond strength of HF is higher than that		
(ii) Hydrogen bond strength of HF is higher than that		*
(ii) Hydrogen bond strength of HF is higher than that	***************************************	,,,,,,,,,
(ii) Hydrogen bond strength of HF is higher than that		
(ii) Hydrogen bond strength of HF is higher than that		
(ii) Hydrogen bond strength of HF is higher than that		

	f water, but, the b	oiling
Take of the land that that of water (Tour / Palac)	,	W
point of HF is less than that of water. (True / False)	N 197	4
		, , , , , , , , , , , , , , , , , , , ,
	32.30	LINII.

CELIERAR

:	(iii)	
12		(3.0 marks)
(a)	cold wa	and Z are non-transition consecutive elements in the same period. X reacts rapidly with ater liberating gas A. The resultant solution B turns phenolphthalein to pink. Y does not rith cold water, but reacts with steam to produce gas A and product C. not react with hot water but reacts with NaOH and HCL to produce gas A.
×	(i) ·	Identify elements X, Y and Z
		X
		Z
	(ii)	Write down relevant balanced chemical equations for above observations of X, Y
		and Z
		X
		Υ
		Z
12	(iii)	Write down balanced chemical equations for reactions occur, when X is burnt in
		excessO ₂ .
	(iv)	When Y is burnt in air, product D and E are formed. D reacts with water to form a
		gas which turns Nessler reagent brown in color.
	1000	(a) Identify D and E.
		D E
u w		(b) Write down balanced chemical equation for the reaction between D and water.
	e: v	(c) Comment on the acidic, basic and amphoteric properties of oxides of X, Y
	•	and Z.
		the state of the s
	**,	
		(d) Chloride of Z is an electron deficient compound. Explain
* *		

	. *******				• • • • • • • • • • • • • • • • • • • •	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
				2		(7.0 mark.
5/0/ 5				4 4 3 54 3 4 4		
		of A by mass	is present in ar	hydrated crysta	is of ASO ₄ , ni	1 ₂ O.
(S=32,O=						
(I) Find t	ne relative ato	omic mass of A.				
					11 .	
						,
****		*********		* 1 4 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
	•					
				·····		
(ii) Calcul	ate the mass p	percentage of or	xygen in the co	ompound.		
150						
1744						
1,1000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.,,,,,,,,,,,,,,		,	
		iiiii			•	
	·					(3.0 marks)
	westions are l	hased on an evr	seriment condi	oted to determine	the moler vol	ume of ovum
Fallowing of	uconons are	based on an exp	content condu	icted to dotoriiiii	die molai voi	unic of oxyg
y using KI	∕lnO₄.	- L - !!! 4		- 18 90 -		
y using KI	InO ₄ .	e boiling tube		= 48.80 g		
y using KI Init Fin	AnO ₄ . ial mass of the	boiling tube		=48.20 g		
y using KN Init Fin Vol	MnO ₄ , ial mass of the al mass of the ume of collec	boiling tube eted O ₂		= 48.20 g = 380 cm ³		
y using KN Init Fin Vol Roc	MnO ₄ , ial mass of the al mass of the ume of collec- om temperatur	boiling tube cted O ₂		= 48.20 g = 380 cm ³ = 27° C		
y using KI Init Pin Vol Roc Atn	AnO ₄ , ial mass of the al mass of the ume of collecton temperatures presented to the contract of the collecton temperatures presented to the collecton temperatures the collecton temperature the collecton temperatures the collecton tempera	e boiling tube cted O ₂ re ssure	0F ⁰ C	= 48.20 g = 380 cm ³ = 27°C = 760 mmHg		
y using KA Init Fin Vol Roc Atn Sat	AnO ₄ , ial mass of the al mass of the ume of collector temperature to present the collector temperature to the collector temperature to the collector temperature the collect	e boiling tube oted O ₂ re ssure pressure of wa		= 48.20 g = 380 cm ³ = 27°C = 760 mmHg = 26.0 mmH	g	
Fin Vol Roc Atm Sat	AnO ₄ , ial mass of the al mass of the ume of collector temperature to present the collector temperature to the collector temperature to the collector temperature the collect	e boiling tube oted O ₂ re ssure pressure of wa		= 48.20 g = 380 cm ³ = 27°C = 760 mmHg	g	
y using KI Init Fin Vol Roc Atn Sat	AnO ₄ , ial mass of the al mass of the ume of collector temperature to present the collector temperature to the collector temperature to the collector temperature the collect	e boiling tube oted O ₂ re ssure pressure of wa		= 48.20 g = 380 cm ³ = 27°C = 760 mmHg = 26.0 mmH	g	
y using KI Init Fin Vol Roc Atn Sat	AnO ₄ , ial mass of the al mass of the ume of collector temperatures presented vapour te down balar	boiling tube cted O ₂ re ssure pressure of wa nced chemical e	equation for the	= 48.20 g = 380 cm ³ = 27°C = 760 mmHg = 26.0 mmH	g of KMnO ₄ .	
y using KI Init Fin Vol Roc Atn Sat	AnO ₄ , ial mass of the al mass of the ume of collector temperatures presented vapour te down balar	e boiling tube cted O ₂ re ssure pressure of wa need chemical e	equation for the	= 48.20 g = 380 cm ³ = 27°C = 760 mmHg = 26.0 mmH	g of KMnO ₄ .	
oy using KI Init Fin Vol Roc Atm Sat (i) Wri	AnO ₄ , ial mass of the al mass of the ume of collec om temperature cospheric pre- urated vapour te down balar	boiling tube cted O ₂ re ssure pressure of wanted chemical e	equation for the	= 48.20 g = 380 cm ³ = 27°C = 760 mmHg = 26.0 mmH	g of KMnO ₄ .	
oy using KI Init Fin Vol Roc Atm Sat (i) Wri	AnO ₄ , ial mass of the al mass of the ume of collec om temperature cospheric pre- urated vapour te down balar	e boiling tube cted O ₂ re ssure pressure of wa need chemical e	equation for the	= 48.20 g = 380 cm ³ = 27°C = 760 mmHg = 26.0 mmH	g of KMnO ₄ .	
oy using KI Init Pin Vol Roo Atn Sat (i) Wri (ii) Cal	AnO ₄ , ial mass of the al mass of the ume of collec om temperatur nospheric pre- urated vapour te down balar culate the nur	e boiling tube cted O ₂ re ssure r pressure of wa nced chemical e	equation for the	= 48.20 g = 380 cm ³ = 27°C = 760 mmHg = 26.0 mmH	g of KMnO ₄ .	

. 3

-,	(iii).	Calculate the volume of O2 occupied by number of moles obtained in part (ii) at stp.
100		
	3	
•		
	(iv)	Calculate molar volume of O ₂ .
		hammananin manananin
,		
51		
	(11)	Write down 2 errors that can be occurred in this experiment.
	(v)	
	(4	
		(5.0 marks
	415	
(b)	(i)	Define following enthalpies and write balanced equations.
		a) Standard neutralization enthalpy for NaOH _{aq}
		a) Standard neutralization entitletpy for NaOn _(aq)
×		
		Harrison Company of the Company of t
٠. ٠		b) Standard 1st electron gain enthalpy for Cl _{2(g)}
	,	
* _*		
		c) Standard sublimation enthalpy for Na _(s)
	10.00	4

(ii) Answer following questions by using thermo chemical data in the table for following reaction.

 $CS_{2(g)} + 4H_{2(g)} \rightarrow CH_{4(g)} + 2H_2S_{(g)}$

(i) Find out ΔH^θ for above reaction at 25 °C.

Compound	Standard formation enthalpy (ΔH_f^{θ}) kJ mol ⁻¹	J mol' K'
CS ₂ (g)	117	238
H ₂ (g)	0	. 130.6
CH ₄ (g)	-75	86
H ₂ S(g)	-20	206

*****	******						********	*********		*******	******	*****	******	******		*******
Fir	id ou	t ΔS ⁶	for	above	e reac	tion a	t 25 °C	S.								
		•				×"				- 1			3			
	,	,.,.				*******	a *								,	
*****						**********					********	******	******			*******
			E 3										,			
Pre	dict	the s	ponta	neity	of at	ove r	eactio	n at 2	5°C							
		8 6					, t		3	9 50 50 1	•					
			********			**********			********	. /		*******		******		*******
****	ţ +-		*****		******	********		*********	*****	**********	*******		*******			
		,,,,,,,,,,	*******	********	********	********		*******	******	********	*******	*******	******	*****	*****	

Grade-12 2nd Term Test

- Part B Essay
- Answer all questions. (Each carries 15 marks)

Chemistry

(a) (i)

II

- The same of the sa
 - (ii) Derive Dalton's law from PV = nRT equation.

State Dalton's law of partial pressure.

- (iii) Venus's atmosphere is composed of 96.5% CO₂, 3.0% N₂, and 0.5% SO₂ by volume. It's atmospheric
- pressure is 9.0×10⁶ Pa. Calculate the partial pressures of the gases.

Calculate the partial pressures of each component in the final mixture

*Universal gas constant $R = 8.314 \text{ Jmol}^{-1}\text{K}^{-1}$ *Avogadro's constant $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

(3.0 marks)

(b) (i) AB₂ (g) is exerted in a 2.00dm³ volume container at 27 °C and 4.8×10⁵ Nm⁻² pressure. When heating

- to 127 °C AB₃(g) dissociated completely as following. Find the final pressure of the system.

 2 AB₃ (g) \longrightarrow AB₂(g) + AB₄(g)

 (ii) When the same initial container is heated to 327 °C AB₃ gas dissociated completely as following.
 - $2 AB_3 (g) \longrightarrow A_2(g) + 3B_2(g)$
- (c) (i) What is meant by compressibility factor of a gas.
 (ii) Draw the behavior of H₂ gas, CH₄ gas and C₂H₆ gas with respect to ideal gas in a graph against compressibility factor and pressure.
 - (iii) Explain their different behavior giving reasons.(iv) In which conditions that real gases deviate from ideal behavior. Give reasons.
- 5. (a) (i) Deduce the shape of following ions.

 1. N₂ 2. CNO
 - (ii) State the oxidation states of central atoms of above ions.
 - (b) (i) 5 mols of electrons are removed from 2.5 mols of hydroxyl amine (NH₂OH) to produce compound X. Moles of N in hydroxyl amine and compound X are same. Find the oxidation state of N in compound X.
 - (ii) Calculate the volume of 0.4 mol dm⁻³ Na₂S₂O₃(aq) solution which is reacted with iodine (I₂) released by the reaction between 50 cm³ of 0.2 mol dm⁻³ CuSO₄(aq) solution and excess amount of K1 in the acidic medium.

3. NO.

In acidic medium $Cu_{(aq)}^{2+} + I_{(aq)}^{-} \rightarrow Cu_{(aq)}^{+} + I_{2}(aq)$ $I_{2}(aq) + S_{2}O_{3(aq)}^{2-} \rightarrow I_{(aq)} + S_{4}O_{6(aq)}^{2-}$ equations are not balanced.

(8.0 marks)

(4 marks)

 $\frac{1}{2}$ A₂(g) + $\frac{3}{2}$ B₂(g) \rightleftharpoons AB₃(g); $\Delta H_R^{\theta} = -20$ kJ mol Standard entropy values for A2(g), B2(g) and AB3(g) are 60, 40, 50 J-1 mo&1 K-1 respectively. Find

the temperature that the reaction reaches to its equilibrium. Find the standard formation enthalpy for following organic compound which is a gas at 1 atm, by

 $\Delta H_D^{\theta}(0=0) = 496 \text{ kJmoe}^{-1}$ $\Delta H_D^{\theta}(c=0) = 743 \text{ kJmo} \ell^{-1}$ $\Delta H_D^{\theta}(c-H) = 412 \text{ kJmo} \ell^{-1}$

$$\Delta H_D^{\theta}$$
 $(c-c) = 348 \text{ kJmo} \mathcal{E}^1$
 ΔH_D^{θ} $(c=c) = 612 \text{ kJmo} \mathcal{E}^1$

(5.0 marks)

(7.5 marks)

 ΔH_{sub}^{θ} (C, graphite) = 718 kJmol⁻¹ $\Delta H_{atm}^{g} (H_{2(g)}) = 218 \text{ kJmo} \ell^{-1}$

(a) When 16.8 g of compound X is heated, 4.4 g of gas A, 1.8 g of gas B and Y solid are formed. Gas A turns lime water milky and the solution become colourless when excess gas A is bubbled, Gas B turns anhydrous CoCl2 in to blue. When solid Y dissolves in water and forms a basic solution. When adding excess amount of BaCl2(aq) to that basic solution white precipitate Z is formed. Z reacts with dilute acids to form gas A. (C=12, O= 16, H=1, S=32, N=14, Na= 23, K=39, Ca=40, Sr=88, Mg = 24)

(i) Identify compound X by suitable calculation and explanation.

Write chemical formula for compounds A, B, Y and Z,

(iii) Write a chemical test to identify X and Y.

Write balanced chemical equations for following. Thermal decomposition of X.

II) Gas A turns lime water milky.

III) The milky solution becomes colorless when bubbling excess amount of gas A in lime water, (7.5 marks) (b) 5 test tubes are labelled from A to E and following compounds are introduced to those tubes. (Not in order)

NaNO3, Mg(NO3)2, NH4NO3, NH4NO2, LINO3

Solid	Description of products
A	Polar colorless gas 2. water vapor
В	1. colorless gas 2, white solid which gives a colored gas with dilute acids
Ç	1. Nonpolar colorless gas 2. water vapor
C D	Nonpolar colorless gas 2. water vapor Water soluble basic white solid 2. coloured gas 3. colourless gas

- Identify compounds A-E. (i)
- Write down balanced chemical equations for thermal decomposition of each compound.
- Draw the most stable Lewis structures for gas A and gas C.