Grade 12 3rd 2018 July Visakha 9

	-	මේකම ඇවිරිණිACC Rights Reserved]		
	වාර පරික්ෂ		ALE COLUMN CONTRA COLUMN CONTRA COLUMN COLUM	
		General Certificate of Educati	on (Adv. Level) Examination,	uly-2018
,		Chemistry I	$\boxed{02} \boxed{E} \boxed{I}$	ime: Two Hours
		* Follow the instructions given or	d. e space provided in the answer sheet carefone of the answer sheet with a cro	fully.
		Universal gas constant, R Avogadro constant N _A Plank's constant h Velocity of light C	=8.314 J mo ℓ^{-1} K $^{-1}$ = 6.022 x 10^{23} mo ℓ^{-1} = 6.626 x 10^{-14} Js = 3 x 10^8 ms $^{-1}$	
	(1)	The set of quantum numbers associated with	the last two elections of an etc	um in an alamant are (2. 1. 1.1
	(1)		the last two elections of all atc	om in an element are (3, 1, ±1,
		$+\frac{1}{2}$) and (3, 1, +1, $-\frac{1}{2}$). The element is,		
:		(1) Al (2) Ca	(3) Cl (4) Ar	(5) S
	(2)	Which of the following ion has the highest a	_i	
	(2)	. Which of the following ion has the highest p		,
		(1) $A\ell^{3+}$ (2) Ca^{2+}	(3) Ba^{2+} (4) Mg^2	(5) Na ⁺
	. (3)	Number of compounds with molecular forms	ala CaHinO, which are optically	inactive is:
	` '	(1) 3 (2) 4	(3) 5 (4) 6	(5) 7
				(3) 7
5	(4)	The increasing order of acidity of $C\ell_2O_7$, Na (1) $Na_2O < MgO < P_2O_5 < C\ell_2O_7$ (3) $MgO < Na_2O < C\ell_2O_7 < P_2O_5$ (5) $P_2O_5 < Na_2O < C\ell_2O_7 < MgO$	(2) $Na_2O < Mg$	50 < Cl ₂ O ₇ < P ₂ O ₅ 2O < P ₂ O ₅ < Cl ₂ O ₇
9	(5)	The answer that does not show the correctly	matching name with structure o	f the organic compound is,
		Compound	IUPAC name	
		1) CH ₃ CH ₂ C (Br) = CH CH(CH ₃) CH ₃	3-bromo-5-methylhex-3-ene	,
		CH ₂ CH ₂ CH= CH CH ₂ OH 2)	5-phenylpent -2-en-1-ol	
		T) GH GH GH GH	hex-3-en-2-one	War a
		3) CH₃CH₂CH = CH−CCH₃		
		4) CH ₃ C≡ C C − C(OH) CH ₃	2-hydroxyhex -4-yn-3-one	
		o 5) CH₃C≡ C CCH₂CHO	3-oxohex-4-ynal	eg e e e e e e e e e e e e e e e e e e
	(6)	When inorganic compound A was thermally	decomposed, diatomic colourle	ess gas was evolved. When it

Then a tetra atomic colourless gas was evolved. Elements that can be present in A are,

(2) N, O, H

was reacted with metallic element with atomic number 12, and water was added to obtained product.

(4) N, Cc, O

(5) N, H, C

- (7) Mass of Helium atom is twice as that of Hydrogen molecule. At 298K mean kinetic energy of Helium is,
 - (1) twice as that of Hydrogen.
- (2) Same as that of Hydrogen.
- (3) Four times as that of Hydrogen.
- (4) Half as that of Hydrogen.
- (5) Above all statements are fauls.
- (8) Which of the following compound shows enantiomerism?

(4)
$$CH_{3}CH_{2}$$
 $C = C$ $CH_{2}CH_{3}$

(5)
$$CH_3$$
 $C = C$ $CH_2C\ell$ CH_2Br

- (9) Which of the following statement is incorrect regarding Na₂S₂O₃.
 - (1) At last with reaction of Pb(NO₃)₂, a black colour precipitate is formed.
 - (2) Used in iodometric titration to determine I2.
 - (3) When reacted with dill HNO3, collodial S is formed.
 - (4) Give a white colour precipitate with aqueous solution of BaCl2.
 - (5) Gives Br2 when reacted with KBr
- (10) Given below-is the Born Haber cycle of formation of MgBr2 lattice.

The answer that gives value of X is,

- (1) $\Delta H_f \Delta H_{at} \Delta H_{IE1} \Delta H_{IE2} \Delta H_{vap} \Delta H_D \Delta H_L$
- $(2) \frac{1}{2} \left[\Delta H_f \Delta H_{at} (\Delta H_{IE1} \Delta H_{IE2}) \Delta H_{vap} \Delta H_D \Delta H_L \right]$
- (3) $\frac{1}{2}(\Delta H_f \Delta H_{at} \Delta H_{1E1} \Delta H_{1E2} \Delta H_{vap} \Delta H_D \Delta H_L)$
- (4) $2(\Delta H_f \Delta H_{at} (\Delta H_{EE1} \Delta H_{IE2}) \Delta H_{vap} \Delta H_D \Delta H_L)$
- (5) $2(\Delta H_f \Delta H_{at} \Delta H_{lE1} \Delta H_{lE2} \Delta H_{vap} \Delta H_D \Delta H_L)$
- (11) Following diagram shows formation reactions of propene and its reactions. Which of the following reaction can't occur.

	(12) Ideal gas A present in a container at 2002	
	(12) Ideal gas A present in a container at 27°C temperature and 2x10 ⁵ Pa page density of that gas? (M _A =28 gmoC ⁻¹)	ressure with volume 5 m3. What is the
	(1) 22 (4)	
	(4) 20 m// -3	(3) 0.2245 kgm ⁻³
*	(3) 5.545 Kgm	
	(13) At constant pressure, temperature of mass of gas is increased fi increasement of that gas is.	70m 100C to 2000 TV
		on 19 C to 20 C. The volume (V)
	(1) Up to V (20/19),	B
- 1	(3) $\frac{1}{273.15}$ amount by volume at at 0 K. (4) $\frac{1}{273.1}$	5 amount by volume at 0°C.
1	(5) No change is said (4) $\frac{1}{273.1}$	5 by its volume.
	(-) To ondinge in volume,	
.	(14) Consider following carbocations.	
.		
	CH ₃	
	$CH_3 - C - C^+ - CH_3$ $CH_3 - C - C^+ - CH_3$ $CH_3 H$	$CH_3 - C - CH_2CH_3$ CH_3
	CH ₂ H	CH ₂ CH ₃
	Cn ₃ 11	CH ₃
	(A) (B)	(C)
1:	The correct increasing order of stability of above carbocations is, (1) $A < B < C$ (2) $B < C < A$ (3) $C < C$	
	(3) C < B < A (4)	C < A < B (5) $A < C < B$
	(15) When aqueous ammonia solution was added to solution as	
	formed. When NaOH solution was added in excess, precipitate get diss	metal ion, a white precipitate was
-	(1) Ca^{2t} (aq) (2) Ba^{2t} (aq) (3) Aa^{2t}	olved. This metal ion can be,
	(a) 148 (8d) (4)	A(2'(aq) (S) All above
	(16) Which of the following statement is incorrect recording the	
: }-	 (16) Which of the following statement is incorrect, regarding titration of K (1) Cr¹⁺ formed in reaction acts as self indicator for the reaction. (2) Elements and by a self-indicator for the reaction. 	2Cr2O2 and C2O4 in acidic medium.
	(2) Phosphoric acid is used to remove formed CO ₂ from medium.	
- {	(3) C ₂ O ₄ acts as standard solution.	
	(4) The C₂O-solution should be heated up to certain extent at the beginn	• 200
	(5) A separate indicator is not used for the titration.	nng,
	The state of the s	
	(17) Solution X is prepared by dissolving 0.288 g of FeC ₂ O ₄ in dill. II ₂ SO ₄ . Under this condition, volume of 0.025 most and requires to	This solution was heated to 650c
1:	Total income in the control of the c	tely with FeC2O4 is (in cm3)
		20413 (111 0111)
	Notable: In solution X, FeC ₂ O ₄ exists as Fe ²⁺ and C ₂ O ₄ ²⁻	* · · ·
-	(1) 50 (2) 40 (3) 48 (4) 3	2 (5) 26
1	(18) Which of the following compound has the highest boiling point,	(5) 36
1 .	(1) (CH ₄), CCH ₂ CU	
1	(3) (CH.) CHOU CH (1)	HCH (CH ₃) ₂
	(4) $CH_3-CH_2-CH_2-CH_2-CH_2$	CH (CH ₃) CH ₂ CH ₃
-		
	(19) How much is the SO ₄ ² -composition (in ppm) in a solution formed by NaOH and 125 cm ³ of 0.1 moldm ³ H ₂ SO ₄ (S=32, O=16, N=22, H ₂)	mission 125 - 1 coo
1	NaOH and 125 cm ³ of 0.1 moldm ⁻³ H ₂ SO ₄ (S=32 O=16 Na=23 H=1)	mixing 125 cm of 0.2 moldm ⁻³
	111.900 (2) 400	^^
	(4) 1000 . (4) 90	(5) 1420
	, , and a solution with descript 1 of many	8 % H2SO4 acid by mass. The
	amount of water moles in 500 cm ³ of this acid solution is, (H=1, S=32, (1) 2.0 (2) 2.5 (3) 1.0	O=16)
) 3.6 (5) 1.8
		F

(1)
$$CH_3$$
 $C=C$ H

(2)
$$C \in C$$
 CH_3 $CH_2 - CC$

(4)
$$C\ell$$
 CC CC CH_3

(22) Physical properties of three species R, S and T are given below.

	Melting	Boiling	Electrical conductivity		
Species	point/ OC .	point/ °C	Solid	Molten	
R	801	1413	poor ·	excellent	
S	2852	3600	poor	excellent	
T	3550	4827	excellent	not known	

Which of the following can be R, S and T species,

	R	S	T .
(1)	NaF .	KCl	Cu
(2)	NaBr	BaO	SiO ₂
. (3)	NaCl	MgO	C(graphite)
(4)	NaBr	MgO	C(diamond)
(5)	LiI	BeCl ₂	Ag

(23) In dichromate of metal M, there are 2 Cr atom for 1 atoms of M. In the oxide of M, mass percentage of M is 60%. Relative molar mass of M is, (Cr=52, O = 16)

(1) 28

(2) 30

(3) 26

(4) 24

(5), 32

(24) Consider following thermo chemical data:

T	Compound	Standard formation enthalpy/kJmol
ŀ	OF ₂ (g)	+23.0
-	H ₂ O(g)	-242.0
	HF(g)	-267.0

The standard enthalpy change of the reaction,

$$OF_2(g) + H_2O(g) \longrightarrow O_2(g) + 2HF(g)$$
 is, (in kJmo ℓ^{-1})

(1) -57

(2) -315

(3) -753

(4) +573

(5) +315

(25) The incorrect statement regarding factors that affect rate of a chemical reaction is,

- (1) When temperature increases, reaction rate increases.
 - (2) When concentration of reactant increases in any chemical reaction, rate increases.
 - (3) In a solid reactant, by increasing contact surface area rate increases.
 - (4) When there are gaseous reactants, partial pressure change of those at unit time, can be considered as the rate.
 - (5) Rate of a reaction is the change in concentration per unit time.

(26)	When inding is he	ated early it out	limingo Which o	f the following is	governt recordi	na salid ladina	and
(20)	When iodine is he iodine vapour,	ated, castly it sub	minizes. Which o	I the following is	correct regarding	ng some rodine	anu.
	Solid	vapor	ır ×			* .	
	(1) Ionic	Atom	ic				
	(2) Ionic	Molec	cular		**	1.	
	(3) Molecular	Atom	ic				
	(4) Molecular	Molec	cujar		500		
	(5) Atomic	Molec	ular .				
(27)	You are provided v	with bottles consis	t solutions of Ag	NO3 and Pb(NO3)	solutions. Whi	ch of the follow	ing
	reagent can be used	I to distinguish the	ose.	18			
	(1) Na ₂ S ₂ O ₃ (aq) (4) KNO ₃ (aq)		(2) K ₂ Cr ₂ O ₇ ((5) H ₂ O(l)	aq)	(3) Na ₂	S(aq)	
	3d transition meta HNO ₃ and resultar NH ₄ OH mixture. A states for A can be, (1) +1 and +4	nt solution gave	a brown colour p as insoluble in ex	orecipitate with c cess of above rea	lill. NaOH as v	vell as NH4Cl	and tion
(29)	Pair of compounds	that under goes d	isproportionation	io aqueous soluti	on is	* · · · · · · · · · · · · · · · · · · ·	
(2)	(1) PCl ₃ and NCl		(2) NO ₂ and S			and SO ₃	
	(4) NO ₂ and Cl ₂	•	(5) Cl ₂ and N		(4) 442		
				V24			
	Metal M was react resultant solution, s dry sulphide with 1	sulphide of metal	was formed as a				50
	(S = 32, A£ = 27, Ci	70					
20.00	3A (1)	(2) Cr	(3).Fe	(4)	00	(5) Cu .	
Y	atuustisus faa aysa	otlanna 21 ta 10					
. 118		he questions 31 to	o 40, four respon				
	(1) If only (a) a	nd (b) are corre	ct	25 22	¥ *	
	. (2) If only (b) a	nd (c) are corre	ct			
		3)—If-only (c) a					
(6)		4) If only (a) a			io onwest		
	-(5) If any other n	umper or combi ummary of abov		ise is correct		
					-		
	(1)	(2)	(3)	(4)		(5)	
	only (a) and	only (b) and	only (c), and	only (a) and	Any other	number of responses	or is
8	(b) are correct	(c) are correct	(d) are correct	(d) are correct	correct	or responses	15
(31)	Which of the follow	wing pairs of lines	has / have some	difference which	is equal to the	difference betwe	een
	2 nd and 3 rd lines of 1	(5) 37			is equal to the c	minoromeo bottiv	JUII
		es of Lyman serie			4		
		nes of Paschen se					
	Andreas and the second second second	nes of Lyman serie	The state of the s				
	, ,	nes of Paschen s					

(32) Molecular speed distribution of gas at two temperatures T₁ and T₂, is given in below graph.

molecular speed

Which of the following inference / inferences can be made according to this,

- (a) Among T₁ and T₂ temperatures, higher temperature is T₂.
- (b) Its confirmed that this gas is an ideal gas.
- (c) at temperature T₁, value of the most probable velocity is larger than that at temperature T₂.
- (d) Molecular speed distribution is high at temperature T2 than at temperature T1.
- (33) Which of the following statement /s is /are incorrect regarding any two compounds with same empical formula
 - (a) Molecular formula should be same.
 - (b) Percentage composition of element should be same.
 - (c) Molecular mass can be different.
 - (d) Number of atoms in each compound should be same.
- (34) Which of the following statement/s is / are true regarding nitrite (NO₂).
 - (a) It does not consist π bonds.
 - (b) Its geometry is trigonal planer.
 - (c) Its shape is bent.
 - (d) Valance shell of Nitrogen has less than 8 electrons.
- (35) Wave energy in microwave oven is absorbed by polar molecule. Which of the following can absorb micro wave.
 - (a) C₂H₅OH
- (b) SiO₂
- (c) CH₃COOH
- (d) CCl4

(36) $H - C \equiv C - CH_2 - C = CH_2$

True statement/s regarding above compound is / are,

- (a) Gives a silver mirror with reaction of ammonical AgNO₃.
- (b) Evolves H₂ with reaction of sodium:
- (c) Decolourizes Br2 water.
- (d) Gives a reddish brown precipitate with ammonical CuCl2
- (37) Which of the following statement/s is / are true.
 - (a) If the density of water is1gcm⁻³, when 0.1moℓ of NaOH is dissolved in 1kg of water, molarity of NaOH solution is 0.1 moldm⁻³
 - (b) Since volume of solution depends on temperature, concentration of solution depends as temperature.
 - (c) Molality of Na₂CO₃ aqueous solution at 25^oC is same as that at 30^oC of same solution.
 - (d) Concentration is an extensive property.

- (38) Which of the following statement/s is /are true regarding thermodynamic sytems.
 - (a) In a closed system, through the boundary work does not exchange.
 - (b) In an open system, through the boundary both matter and energy exchange.
 - (c) In an siolated system, any process with positive entropy change is spontuneous.
 - (d) In an isolated system, even though matter does not exchange, energy exchanges.
- (39) $CH_3 CHCH = Br$

Which of the following statement /s is /are correct regarding above compound.

- (a) It can exist in four stereoisomeric forms.
- (b) Product formed by catalytic hydrogenation shows two stereoisomeric forms
- (c) product formed by treating with alcoholic KOH shows optical isomerism.
- (d) Product formed by treating with alkaline KMnO₄ has four steoisomeric forms
- (40) Consider the following reaction, $3H_2(g) + N_2(g) \longrightarrow 2NH_3(g)$

Which of the following relation/s is/are correct regarding rate of this reaction.

(a)
$$-\frac{1}{3}\frac{\Delta[H_2(g)]}{\Delta t} = \frac{-\Delta[N_2(g)]}{\Delta t}$$

(b)
$$-\frac{1}{3}\frac{\Delta[H_2(g)]}{\Delta t} = \frac{\Delta[N_2(g)]}{\Delta t}$$

(c)
$$\frac{\Delta[N_2(g)]}{\Delta t} = \frac{2\Delta[NH_3(g)]}{\Delta t}$$

(d)
$$\frac{-\Delta[H_2(g)]}{\Delta t} = \frac{1}{2} \frac{\Delta[N_2(g)]}{\Delta t}$$

Instructions for question no. 41 to 50.

In question no. 41 to 50, two statements are given in respect of each question.

From the table given below, select the response out of the responses (1), (2), (3), (4) and (5) that best fits the two statements and mark appropriatly on your answer sheet.

Response	First statement	Second Statement
(1)	True	True, and correctly explains the first statement.
(2)	True	True, but does not explain the first statement correctly.
(3)	True	False
(4)	False	True
(5)	False	False

	First statement	Second Statement
41.	Van der waal equation can be used for gases that begaves ideally.	Van der waal equation consits ammendment for deviation of real gases.
2.	Molar volume of an ideal gas is 22.4 dm ³ .	Molecules of ideal gas are free of molecular volume and do not show inter molecular interactions.
3.	Concentration is an intensive property.	Intensive property is a property which depends on amount of substance in the system.
4.	All three carbon atoms of propynal lie on same plane.	All the carbon atoms of propynal show same hybridization.
5.	By subjecting CH ₃ CH ₃ for chlorination, CH ₃ CH ₃ C&can be obtained.	In the presence of diffused sun light, alkanes are subjected to chlorination.
6.	IF4ion is not tetrahedral.	In IF ₄ ion, geometry around I atom is not tetrahedral.
7.	In the presence of NaOH, MnO ₂ and KI react to form I ₂ and Mn(OH) ₂ .	KI can act as a reducing agent.
18.	When conc.HCl is added to a test tube which consits a solid mixture of Na ₂ CrO ₄ and PbCl ₂ gives a yellow colour precipitate.	PbCl₂ is a yellow colour precipitate.
19.	Boiling point at H ₂ O ₂ is greater than that of water.	than that of H ₂ O.
0.	Conc. Sulphuric acid can be used to dry NH ₃ gas.	Conc. Sulphuric acid is dehydrating agent.

VisakhaVidyalaya – Colombo Third Term Test July 2018 Grade – Year 12

Chemistry II

ma :

Time: 3 hours

Part A-Structured Essay (Pages 02-08)

*Use of calculators is not allowed.

- * Answer all the questions.
- * Write your answer in the space provided below each question.
- Please note that the space provided is sufficient for the answer and that extensive answers are not expected.

In answering questions 4 and 7, you may represent alkyl groups in a condensed manner.

Part B and Part C - Essay (Pages 11 - 16)

- Answer four questions selecting not more than two questions from each part.
- * At the end of the time allocated for this paper, the answers to three parts A, B and C together so that part A is on top and hand them over to the supervisor.
- * You are permitted to remove only Part B and C of the question paper from the Examination Hall.

ntR	=8.314 J mol ⁻¹ K ⁻¹
N_{A}	$= 6.022 \times 10^{23} \text{ mol}^{-1}$
h	$= 6.626 \times 10^{-34} \text{ Js}$
C	$= 3 \times 10^8 \text{ m s}^{-1}$
	N _A

For Examiner's Use only

Part	Q. NO. 9	Marks
	1 1	+
· A		
	2 .	
	3	
20 100		
1	. 4	
	5	
В		
	6	
	7	
	8	
С		
	9	
	. 10	-
	-	× ×

Final Marks

In numbers	
In Letters	

Structure Essay - Part A

Answer all the questions. (each question carries 10 marks.)

 (a) (i) Complete the expression given below to determine the oxidation state (O) of an atom in a Lewis structure by inserting the terms N_A, N_{LP} and N_{BP} in the appropriate boxes

NA=Number of valence electrons in the atom

N_{LP}= Number of electrons in lone pairs

 N_{BP} = Number of electrons in bonding pairs around atoms (Here bond electron pair

belongs to more electro negative element)

(ii) Fill in the values for N_A , N_{LP} and N_{BP} in the appropriate boxes and calculate the oxidation state on N, $O_{(N)}$, in the structure NCO given below.

$$[:N-C\equiv 0:]$$

$$O_{(N)} = -\left[+ \right]$$

(iii) Draw the most acceptable Lewis structure for $S_2C\ell_2$.

(iv) Draw two resonance structures for SF_2O . S-O

- (v)-Based on the Lewis-structure-given below, state the following regarding C, N and O atoms given in the below table.
 - I. VSEPR pairs around the atom.
 - II. Electron pair geometry around the atom.
 - III. Shape around the atom.
 - IV. hybridization of the atom.

$$\begin{array}{cccc}
H & O & H \\
I & I & I \\
H - N - O - C - C - C = N
\end{array}$$

Atoms are numbered as follows.

VSEPR p	air		·		,
electron p	pair geometry		 		
Shape ·				-	
hybridizat	tion				
(vi) Id	entify atomic / hybric Lewis structure give 1. N ¹ -O ²	en in part (v)	above. (Numbe	oring of atoms is	as in part (v))
	II. O^2-C^3			C³	
D#3	III. C^3-C^4			C ⁴	.,
	IV. C^5-N^6	.C2		N ⁶	
	8 2 26			1.*1	1 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
me mgi	write relevant quantur nest energy.	1	for electron /s	in sub energy le	(6.5 may
				·····	
***********		: ************************************			***************
	,				
ii) Identify	the type/s of intermo	lecular forces	present in I, I	and III given be	elow.
	gas				
II) CO	gas			**********************	
III) Glu	cose solution		•		
iii) "The l	boiling point of 2,2-di	nethylpropane	is lower than t	he boiling point	of `
	ne" Giving reasons sta				
			is statement is	ilde of faise.	
************	*************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			······································
************		**************			
	······				

	,				
*************			······································	i	
(Reaso	ge the following in the ons are not required)	increasing of	der of properly	y indicated i pare	entheses
I,	CH₃CN, CH₃CONH₂	, CH ₃ CH ₂ NH ₂	, CH3CHNH (C-N bond length)
	<		1.50		
11.	LiOH, NaOH, KOH (A ,5
				e 55 - W	. *
***				•	٤.
111.	CH_4 , CH_3^- , $CH_3C\ell$,				
	<	<		*******	(3,5 mark

N

(ii) State all positive oxidation states of A and give chemical formula of example for each oxidauon state. (iii) Write formula of compound D formed by combining B and C. (iv) Write formula of oxyanion formed by combining A and B. (v) Write a chemical test that can be used to distinguish two anions given in (iv). (b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HC2 was added. colourless gas was evolved. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test I(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₂ OH was added. Precipitate did not dissolve.	(ii) State all positive oxidation states of A and give chemical formula of example for each oxidation state. (iii) Write formula of compound D formed by combining B and C. (iv) Write formula of oxyanion formed by combining A and B. (v) Write a chemical test that can be used to distinguish two anions given in (iv). (b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HC£ was added. colourless gas was evolved. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test I(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then cone.	non transition. The first ionization variation of these ele	
(ii) State all positive oxidation states of A and give chemical formula of example for each oxidation state. (iii) Write formula of compound D formed by combining B and C. (iv) Write formula of oxyanion formed by combining A and B. (v) Write a chemical test that can be used to distinguish two anions given in (iv). (b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test 1. (i) Dill.HCt was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test I(iii) yellow precipitate (Y) was formed. Gas was evolved. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₂ (OH was added. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₂ (OH was added.)	(ii) State all positive oxidation states of A and give chemical formula of example for each oxidation state. (iii) Write formula of compound D formed by combining B and C. (iv) Write formula of oxyanion formed by combining A and B. (v) Write a chemical test that can be used to distinguish two anions given in (iv). (b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill.HC£ was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. Necoporate of example for each cannot be used to distinguish two anions given in (iv).	(i) Identify elements A, B and C.	·C
(iii) Write formula of compound D formed by combining B and C. (iv) Write formula of oxyanion formed by combining A and B. (v) Write a chemical test that can be used to distinguish two anions given in (iv). (4. (b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HC2 was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added. Precipitate did not dissolve.	(iii) Write formula of compound D formed by combining B and C. (iv) Write formula of oxyanion formed by combining A and B. (v) Write a chemical test that can be used to distinguish two anions given in (iv). (d. Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill.,HCl was added. colourless gas was evolved. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in a acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.		
(iii) Write formula of compound D formed by combining B and C. (iv) Write formula of oxyanion formed by combining A and B. (v) Write a chemical test that can be used to distinguish two anions given in (iv). (b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HCk was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Vellow precipitate (Y) was formed. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH,OH was added. Precipitate did not dissolve.	(iii) Write formula of compound D formed by combining B and C. (iv) Write formula of oxyanion formed by combining A and B. (v) Write a chemical test that can be used to distinguish two anions given in (iv). (b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HCz was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) vellow precipitate (Y) was formed. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH,OH was added. Precipitate did not dissolve.		ve chemical formula of example for each
(iii) Write formula of compound D formed by combining B and C. (iv) Write formula of oxyanion formed by combining A and B. (v) Write a chemical test that can be used to distinguish two anions given in (iv). (d. (b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HCC was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test I (iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₂ OH was added.	(iii) Write formula of compound D formed by combining B and C. (iv) Write formula of oxyanion formed by combining A and B. (v) Write a chemical test that can be used to distinguish two anions given in (iv). (d. (b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HCt was added. colourless gas was evolved. (ii) Evolved gas was tested with filter paper dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₂ OH was added.		
(iii) Write formula of compound D formed by combining B and C. (iv) Write a chemical test that can be used to distinguish two anions given in (iv). (b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill.HC2 was added. colourless gas was evolved. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (iii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₂ OH was added.	(iii) Write formula of compound D formed by combining B and C. (iv) Write a chemical test that can be used to distinguish two anions given in (iv). (b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HC2 was added. colourless gas was evolved. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₂ OH was added.		
(iii) Write formula of compound D formed by combining B and C. (iv) Write formula of oxyanion formed by combining A and B. (v) Write a chemical test that can be used to distinguish two anions given in (iv). (d. (b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HCl was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test I (iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₂ OH was added. Precipitate did not dissolve.	(iii) Write formula of compound D formed by combining B and C. (iv) Write formula of oxyanion formed by combining A and B. (v) Write a chemical test that can be used to distinguish two anions given in (iv). (b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill, HC& was added. colourless gas was evolved. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill, HNO3 acid was added. Gas was evolved. (iii) Evolved gas was subjected to test I(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added.		
(iv) Write formula of oxyanion formed by combining A and B. (v) Write a chemical test that can be used to distinguish two anions given in (iv). (4. (b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test (ii) Dill. HC& was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (iii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test I(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₂ OH was added.	(iv) Write formula of oxyanion formed by combining A and B. (v) Write a chemical test that can be used to distinguish two anions given in (iv). (d. Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HC& was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test I(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.		5. 5. 5. 5. 5.
(iv) Write a chemical test that can be used to distinguish two anions given in (iv). (b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HC2 was added. colourless gas was evolved. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.	(iv) Write a chemical test that can be used to distinguish two anions given in (iv). (b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HC2 was added. colourless gas was evolved. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.	(iii) Write formula of compound D formed by cor	nbining B and C.
(iv) Write a chemical test that can be used to distinguish two anions given in (iv). (v) Write a chemical test that can be used to distinguish two anions given in (iv). (d. Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill.,HC2 was added. colourless gas was evolved. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₂ OH was added.	(iv) Write a chemical test that can be used to distinguish two anions given in (iv). (v) Write a chemical test that can be used to distinguish two anions given in (iv). (d. Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill.,HC2 was added. colourless gas was evolved. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₂ OH was added.		
(v) Write a chemical test that can be used to distinguish two anions given in (iv). (b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HCl was added. colourless gas was evolved. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test l(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.	(v) Write a chemical test that can be used to distinguish two anions given in (iv). (b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HCl was added. colourless gas was evolved. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test l(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.		
(v) Write a chemical test that can be used to distinguish two anions given in (iv). (d. Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill., HCl was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.	(v) Write a chemical test that can be used to distinguish two anions given in (iv). (d. Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill., HCl was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.	(iv) Write formula of oxyanion formed by combin	ning A and B.
(v) Write a chemical test that can be used to distinguish two anions given in (iv). (d. Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill., HCl was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.	(v) Write a chemical test that can be used to distinguish two anions given in (iv). (d. Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill., HCl was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.		
(v) Write a chemical test that can be used to distinguish two anions given in (iv). (d) (b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HC was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.	(v) Write a chemical test that can be used to distinguish two anions given in (iv). (d) (b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HC was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.		
(v) Write a chemical test that can be used to distinguish two anions given in (iv). (d. Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HC was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.	(v) Write a chemical test that can be used to distinguish two anions given in (iv). (d. Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HC was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.		
(b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HCl was added. colourless gas was evolved. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.	(b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HCl was added. colourless gas was evolved. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.		
(b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HC2 was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.	(b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HC2 was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.		
(ii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test 1(iii) (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added.	(ii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test 1(iii) (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added.		
(4. (b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill., HCl was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.	(4. (b) Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill., HCl was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.		
Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HCl was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.	Colourless aqueous solution R consists two anions and a cation. Following tests were carried out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HCl was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.		
out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HC2 was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.	out to identify these ions. For each test a new portion of solution R was used. Test Observation 1. (i) Dill. HC2 was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.		
Test Observation 1. (i) Dill. HC2 was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was tested with filter Orange colour changed to green. A pale Yellow precipitate (X) was formed. Gas was evolved. Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added. Precipitate did not dissolve.	Test Observation 1. (i) Dill. HC2 was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was tested with filter Orange colour changed to green. A pale Yellow precipitate (X) was formed. Gas was evolved. Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added. Precipitate did not dissolve.	**************************************	
Test Observation 1. (i) Dill. HCl was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed to green. A pale Yellow precipitate (X) was formed. Gas was evolved. Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.	Test Observation 1. (i) Dill. HCl was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed to green. A pale Yellow precipitate (X) was formed. Gas was evolved. Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added.		(4
(ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test 1(iii) (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added. No colour change. Orange colour changed to green. A pale Yellow precipitate (X) was formed. Gas was evolved. Colour changed from orange to green.	(ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test 1(iii) (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added. No colour change. Orange colour changed to green. A pale Yellow precipitate (X) was formed. Gas was evolved. Colour changed from orange to green.	(b) Colourless aqueous solution R consists two anions a	(4)
paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test 1(iii) (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added. Orange colour changed to green. A pale Yellow precipitate (X) was formed. Gas was evolved. Colour changed from orange to green.	paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test 1(iii) (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added. Orange colour changed to green. A pale Yellow precipitate (X) was formed. Gas was evolved. Colour changed from orange to green.	(b) Colourless aqueous solution R consists two anions a out to identify these ions. For each test a new portion	and a cation. Following tests were carried n of solution R was used.
paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test 1(iii) (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added. Orange colour changed to green. A pale Yellow precipitate (X) was formed. Gas was evolved. Colour changed from orange to green.	paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test 1(iii) (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added. Orange colour changed to green. A pale Yellow precipitate (X) was formed. Gas was evolved. Colour changed from orange to green.	(b) Colourless aqueous solution R consists two anions a out to identify these ions. For each test a new portio	and a cation. Following tests were carried on of solution R was used. Observation
(iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test 1(iii) (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added. Orange colour changed to green. A pale Yellow precipitate (X) was formed. Gas was evolved. Colour changed from orange to green.	(iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test 1(iii) (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added. Orange colour changed to green. A pale Yellow precipitate (X) was formed. Gas was evolved. Colour changed from orange to green.	(b) Colourless aqueous solution R consists two anions a out to identify these ions. For each test a new portio Test 1. (i) Dill. HCl was added.	and a cation. Following tests were carried on of solution R was used. Observation colourless gas was evolved.
dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test 1(iii) (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added. A pale Yellow precipitate (X) was formed. Gas was evolved. Colour changed from orange to green. Precipitate did not dissolve.	dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test 1(iii) (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added. A pale Yellow precipitate (X) was formed. Gas was evolved. Colour changed from orange to green. Precipitate did not dissolve.	(b) Colourless aqueous solution R consists two anions a out to identify these ions. For each test a new portion Test 1. (i) Dill. HCl was added. (ii) Evolved gas was tested with filter	and a cation. Following tests were carried on of solution R was used. Observation colourless gas was evolved.
dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test 1(iii) (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added. A pale Yellow precipitate (X) was formed. Gas was evolved. Colour changed from orange to green. Precipitate did not dissolve.	dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test 1(iii) (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added. A pale Yellow precipitate (X) was formed. Gas was evolved. Colour changed from orange to green. Precipitate did not dissolve.	(b) Colourless aqueous solution R consists two anions a out to identify these ions. For each test a new portio Test 1. (i) Dill. HCl was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate.	and a cation. Following tests were carried on of solution R was used. Observation colourless gas was evolved. No colour change.
2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test 1(iii) (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added. A pale Yellow precipitate (X) was formed. Gas was evolved. Colour changed from orange to green. Precipitate did not dissolve.	2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added. (iii) Evolved gas was subjected to test 1(iii) (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added. A pale Yellow precipitate (X) was formed. Gas was evolved. Colour changed from orange to green. Precipitate did not dissolve.	(b) Colourless aqueous solution R consists two anions a out to identify these ions. For each test a new portion Test 1. (i) Dill. HCl was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter	and a cation. Following tests were carried on of solution R was used. Observation colourless gas was evolved. No colour change.
added. (ii) Precipitate was separated by filtering and excess difl. HNO ₃ acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added.	added. (ii) Precipitate was separated by filtering and excess difl. HNO ₃ acid was added. (iii) Evolved gas was subjected to test 1(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added.	(b) Colourless aqueous solution R consists two anions a out to identify these ions. For each test a new portion Test 1. (i) Dill. HCl was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium	and a cation. Following tests were carried on of solution R was used. Observation colourless gas was evolved. No colour change. Orange colour changed to green.
and excess dill. HNO ₃ acid was added. Gas was evolved. Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added.	and excess dill. HNO ₃ acid was added. Gas was evolved. Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added.	(b) Colourless aqueous solution R consists two anions a out to identify these ions. For each test a new portion Test 1. (i) Dill. HCl was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate.	and a cation. Following tests were carried on of solution R was used. Observation colourless gas was evolved. No colour change. Orange colour changed to green. A pale Yellow precpitate (X) was
(iii) Evolved gas was subjected to test l(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added.	(iii) Evolved gas was subjected to test l(iii) Colour changed from orange to green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added.	(b) Colourless aqueous solution R consists two anions a out to identify these ions. For each test a new portion Test 1. (i) Dill. HCl was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added.	and a cation. Following tests were carried on of solution R was used. Observation colourless gas was evolved. No colour change. Orange colour changed to green. A pale Yellow precpitate (X) was formed.
green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added.	green. (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added.	(ii) Evolved gas was tested with filter paper dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering	A pale Yellow precipitate (X) was formed.
(iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added.	(iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH ₄ OH was added.	(b) Colourless aqueous solution R consists two anions a out to identify these ions. For each test a new portion Test 1. (i) Dill. HCl was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added.	and a cation. Following tests were carried on of solution R was used. Observation colourless gas was evolved. No colour change. Orange colour changed to green. A pale Yellow precpitate (X) was formed. yellow precipitate (Y) was formed. Gas was evolved.
filtering and washed and then conc. NH ₄ OH was added.	filtering and washed and then conc. NH ₄ OH was added.	(b) Colourless aqueous solution R consists two anions a out to identify these ions. For each test a new portion Test 1. (i) Dill. HCl was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added.	and a cation. Following tests were carried in of solution R was used. Observation colourless gas was evolved. No colour change. Orange colour changed to green. A pale Yellow precpitate (X) was formed. yellow precipitate (Y) was formed. Gas was evolved. Colour changed from orange to
NH₄OH was added.	NH₄OH was added.	(b) Colourless aqueous solution R consists two anions a out to identify these ions. For each test a new portion Test 1. (i) Dill. HCl was added. (ii) Evolved gas was tested with filter paper dipped in lead acetate. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO ₃ was added. (ii) Precipitate was separated by filtering and excess dill. HNO ₃ acid was added.	and a cation. Following tests were carried on of solution R was used. Observation colourless gas was evolved. No colour change. Orange colour changed to green. A pale Yellow precpitate (X) was formed. yellow precipitate (Y) was formed. Gas was evolved. Colour changed from orange to green.
		(ii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was subjected to test 1(iii) (iv) Yellow precipitate Y was separated by	and a cation. Following tests were carried on of solution R was used. Observation colourless gas was evolved. No colour change. Orange colour changed to green. A pale Yellow precpitate (X) was formed. yellow precipitate (Y) was formed. Gas was evolved. Colour changed from orange to green.
I A (1) Not IH was annen ann neatest. I A eas grotreu.	5. (i) INDOIT WAS AUTHOR AND TOURS	(ii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (iii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iv) Yellow precipitate Y was separated by filtering and washed and then conc.	and a cation. Following tests were carried on of solution R was used. Observation colourless gas was evolved. No colour change. Orange colour changed to green. A pale Yellow precpitate (X) was formed. yellow precipitate (Y) was formed. Gas was evolved. Colour changed from orange to green.
(ii) Evolved gas was tested tested with Filter paper turned brown.		(ii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was tested with filter dipped in acidified potassium dichromate. 2. (i) Small amount of aqueous AgNO3 was added. (ii) Precipitate was separated by filtering and excess dill. HNO3 acid was added. (iii) Evolved gas was subjected to test 1(iii) (iv) Yellow precipitate Y was separated by filtering and washed and then conc. NH4OH was added. 3. (i) NaOH was added and heated.	and a cation. Following tests were carried on of solution R was used. Observation colourless gas was evolved. No colour change. Orange colour changed to green. A pale Yellow precpitate (X) was formed. yellow precipitate (Y) was formed. Gas was evolved. Colour changed from orange to green. Precipitate did not dissolve. A gas evolved.

	(i)	What is /are the gas / gases responsible for observation in test 1 (i).
	(ii)	What are the compounds in pale yellow precipitate (X) in test 2(i).
	. (
2	(iii)	What are the two anions in R.
	(iv)	What is the cation in R.
	(v)	Write the chemical formula of species responsible for observations in following situations. I. Dark yellow precipitate (Y) in 2(ii).
		Zank joho v preospiale (1) in 2(11)
	* * * * * * * * * * * * * * * * * * *	II. Gas in 3(ii).
	(vi)	Write a balanced ionic equation for reaction in 1(lii).
	**	(6.0 marks)
3. (a)	(i) For a	an ideal gas plot the variation of compressibility factor (Z) with pressure (P) at 237 K temperature.
		†
	869	
	×*	
	(ii)	At same temperature is above graph, draw the variation expected for H ₂ , CH ₄ and C ₂ H ₄ gases.
The second of the second secon	(111)	Draw the variation of Z with P for 1 mol of Hydrogen gas at -70°C and 20°C temperature in a new graph.
		^
	(iv)	Give reasons for the difference of variation of compressibility factor for real gases with respect to ideal gases.
	¥	,
	,	
		5

		2 2	(v) 2.30 g of MgCO ₃ was heated strongly evolved CO ₂ was collected at 27 °C an volume CO ₂ of at STP. (Mg = 24, C =	y to get a constant of 1×10^5 Pa, volum 12, O = 16)	mass of residune was 250 cm ³ .	e 1,10g. When Find out molar	
		-					-
2							
		,					ĺ
		194 A 19					
						(4.6 mg	arke)
		2				(4.0 mit	"Nay
		(b) (i					
			Standard Formation enthalpy CH ₃ COOH				
		277	Standard sublimation enthalpy C	=715 kJm	10e-1		
			Standard bond dissociation enthalpyH-I	H =432 kJm	108-1		
			Standard bond dissociation enthalpyC-l	100 Page 100	108-1	21 at	
		•	Standard bond dissociation enthalpy C-		* C		
	ļ.				The state of the s		2
			Standard bond dissociation enthalpy C-		•		
			Standard bond dissociation enthalpy O-				
			Standard bond dissociation enthalpy O=	O =496 kJm	10 e-1		. 1
Par and			(i) Calculate standard bond dissociation	enthalpy of C=O b	ond using a the	rmochemical	
e 8			cycle.		25		
8						***************************************	
						2	
		*					
				*	*.*		
9.							
Although Charles and Charles a		le.			**************************************	EFFER PETERS OF TALET SAME SELECT	** *****
· · · · · · · · · · · · · · · · · · ·	+	.i				***************************************	
140		27 75%					
							. :
	 						
1 100 8			(ii) Following thermochemical data are p	provided at 25°C fo	or reaction,		
	200		$H_{2(g)} + C\ell_{2(g)} \longrightarrow 2HC\ell_{(g)}$				
				· · · · · · · · · · · · · · · · · · ·		1100	
ang a			Chemical species	H _{2(g)}	Cl _{2(g)}	. HCl(g)	
			Standard formation enthalpy /kJmol-1	0.00	0.00	-90.00	
	6		Standard entropy / kJmol-1K-1	0.80	0.12	0.60	**
			(I) Calculate ΔH ⁰ for reaction at 25 ⁰ C.				
							*
					ggaanianiann		
s if		•					
al a scar	T		**************************************	6		, ,	8

. •		***	į				(II)	Calcu	ılate ΔS ^e for r	eaction at 2	25°C.	•	3-8			
		•							,							.,,,,,
																 .
			1 91		1											
		•			,		ain.	Dedu	ce whether re	actions is sno					*	
	: !						(16)	Deuti			33.03					
	14	•,•	V.	İ	et 81							6 6				••••
	ì			.>	•:		٠,	12	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
				-								,				
						٠,				· · · · · · · · · · · · · · · · · · ·	••••					
																(5.5 marks)
			13 er		4.		hydro ≃12 , F		n A, mass per	centage of o	carbon	s 88.89%. I	its relative n	iolecular m	ass is about	155.
Wester	: -					,-			out empirical	formula an	d molec	ular formu	la of A		٠	
		i.	,				(1)	THICK	out ompriou				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	1	÷												······		

***	!				4 1									•		
1			4			· ·	•		*****************							
		1			•					*************		****				4 9
: :	:					;								· · · · · · · · · · · · · · · · · · ·		
					4, **	9 - 5		۸.,	5 Ms					10.20		
	١.						(ii)	If A'i	s not a cyclic	compound,	, draw (14 structure	s that can ha	ve for A.		
								_								
												\$8	1-			
	:								- 4			Ç				
			, .					, L				* 383				
								Γ				:				
	<u>.</u>			·						C C S S	3					N. 60 a a
														n one		9
							r r =	L			لــــا		<u></u>	 		
		:		,									*			
							0.18		a = v) i	
X 1 (*)	i ' 				*		•			9	•					
	1.		ş	-		,		•	- × * *							
-2×.									* , .			7			14	
H 600 F	0.00										annual description of the	CAMPONING THE WORKS WHEN		THE RESERVE THE PERSON NAMED IN		

(2)		(111)	Lindlar catalyst to and C.	nich is an isomer of form gaseous hydro	ocarbon C. C s	hows diasteno	merism. Identify	В
						*		. 21.
							-	
•			*		340			
			· · · · · · · · · · · · · · · · · · ·	В	Lan-	C		
	17		A w	• • •		H 2 47	200 0 0	(4.4 mar)
E 12	(b)	Write	a mechanism for fo	llowing reaction.		9		
		CI	$-IC\ell_3 + C\ell_2 \frac{\text{diffused}}{\text{sun light}}$	$\frac{d}{d}$ \rightarrow $CC\ell_4 + HC\ell$,		9	H
, :		100	*6			200		
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	į.							
a* 3								
8								
		51			,	2		(1.6 mar
	(c)	Acycli	ic unsaturated hydr	ocarbon X with mo	lecular formul	a C _n H _m shows	enantiomerism l	has
1 1		the lov	west relative molec	ular mass.		*		
		the lov	west relative molec					
		the lov	west relative molec	ular mass. possible values for				
	0.00	the lov	west relative molec Write the smallest	ular mass. possible values for	n and m. m		ion, saturated	
	e ks	the lov	west relative molec Write the smallest n When above hydr	ular mass. possible values for	n and m. n	tic hydrogenat	ion, saturated	
		the lov	west relative molec Write the smallest n When above hydr	ular mass. possible values for coarbon X was subj	n and m. n	tic hydrogenat	ion, saturated	
		the lov	west relative molec Write the smallest n When above hydr	ular mass. possible values for coarbon X was subj	n and m. n	tic hydrogenat	ion, saturated	
	e e e e e e e e e e e e e e e e e e e	the lov	west relative molec Write the smallest n When above hydr	ular mass. possible values for coarbon X was subj	n and m. n	tic hydrogenat	ion, saturated	
		the lov	west relative molec Write the smallest n When above hydr	ular mass. possible values for coarbon X was subj	n and m. n	tic hydrogenat	ion, saturated	
		the lov	west relative molec Write the smallest n When above hydr	ular mass. possible values for coarbon X was subj	n and m. n	tic hydrogenat	ion, saturated	
		the lov	west relative molec Write the smallest n When above hydr	ular mass. possible values for cocarbon X was subjust formed. Draw the	n and m. n	tic hydrogenat	ion, saturated	
		the lov	west relative molec Write the smallest n When above hydr	ular mass. possible values for coarbon X was subj	n and m. n	tic hydrogenat	ion, saturated	
		the lov (i)	west relative molect Write the smallest n When above hydrocarbon Y wa	ular mass. possible values for cocarbon X was subjutes formed. Draw the	n and m. n ected to cataly estructure of Y	tic hydrogenat		and
		the lov (i)	west relative molectory white the smallest n	ular mass. possible values for ocarbon X was subject the subject that hybridizations that hybridizations are subject to the subject that hybridizations that hybridizations that hybridizations are subject to the sub	n and m. m ected to cataly estructure of Y	tic hydrogenat	of Y from X	and
		the lov (i) (ii)	Write the smallest n	ular mass. possible values for ocarbon X was subjutes formed. Draw the Y toms that hybridization atoms by drawing a common state of the subject of the s	n and m. n ected to cataly estructure of Y	tic hydrogenat	of Y from X	and
		the lov (i) (ii)	Write the smallest n	ular mass. possible values for ocarbon X was subject the subject that hybridizations that hybridizations are subject to the subject that hybridizations that hybridizations that hybridizations are subject to the sub	n and m. n ected to cataly estructure of Y	tic hydrogenat	of Y from X	and
		the lov (i) (ii)	Write the smallest n	y coms that hybridizati atoms by drawing a chem	n and m. n1 ected to cataly estructure of Y ion changed decycle, in above ical test.	tic hydrogenat	of Y from X a	and
		the lov (i) (ii)	Write the smallest n	y coms that hybridizati atoms by drawing a chem	n and m. m ected to cataly estructure of Y ion changed d cycle, in above ical test.	tic hydrogenat	of Y from X alrawn by you.	
		the lov (i) (ii)	Write the smallest n	y y y y y y y y y y y y y	n and m. n1 ected to cataly estructure of Y ion changed d cycle, in above ical test.	tic hydrogenat	of Y from X alrawn by you.	
		the lov (i) (ii)	Write the smallest n	y coms that hybridizati atoms by drawing a chem	n and m. n1 ected to cataly estructure of Y ion changed d cycle, in above ical test.	tic hydrogenat	of Y from X alrawn by you.	
		the lov (i) (ii)	Write the smallest n	y y y y y y y y y y y y y	n and m. m ected to cataly estructure of Y ion changed decycle, in above ical test.	tic hydrogenat	of Y from X a	
		the lov (i) (ii)	Write the smallest n	y coms that hybridizati atoms by drawing a c	n and m. m ected to cataly estructure of Y ion changed decycle, in above ical test.	tic hydrogenat	of Y from X a	
		the lov (i) (ii)	Write the smallest n	y coms that hybridizati atoms by drawing a c	n and m. m ected to cataly estructure of Y ion changed decycle, in above ical test.	tic hydrogenat	of Y from X a	
		the lov (i) (ii)	Write the smallest n	y coms that hybridizati atoms by drawing a chem	n and m. m ected to cataly estructure of Y ion changed decycle, in above ical test.	tic hydrogenat	of Y from X a	

AL/2015/02-S-II(B)

II

අධායන පොද යන්න පත (උසල්පෙළ) විභාගය 2018 ජලි

General Certificate of Education (Adv. Level) Examination, 2018 July

රසායන විදහාව Chemistry

13 - ලේකිය, 12 -Grade- 12

*Universal gas constant R 8.314 J moe-1K-1

6.022 x 10²³ moe⁻¹ * Avogadro's constant NA=

Part B - Essay

- . Answer two questions. (Each carries 15 marks)
- (a) (i) Write ideal gas equation and introduce each term.
 - Two rigid contains with volume Vdm3 in each, consist oxygen gas are connected by a capillary tube with value which has a negligible volume. Then value was opened and both bulbs were maintained at 27°C temperature. The pressure of the system was 1.2×10⁵ Pa Temperature of one container was maintained at 27 °C, while tempe 1/2 ture of other container was raised to 127°C. What is the new pressure of the system.

- (b) (i) Write balanced chemical equations for following enthalpy changes for compound CaCt, (s) which is highly water soluble ionic compound.
 - Standard dissolution enthalpy of CaCt2(s) = -x kJ mot-1 1.
 - II. Standard hydration enthalpy of CaClas = y kJ mot-1
 - Standard lattice enthalpy of CaCl2(a) $= -z \, kJ \, mol^{-1}$
 - (ii) Using enthalpy level diagram, derive a relationship for standard dissolution enthalpy of CaCt_{2(s)} using X,Y and Z.
 - (iii) Determine either ionic compound NaClist or LiClist has the highest water solubility, using energy level diagram and a calculation, if following data are provided

allery designation of the secondaries of	AH hyd kJ moe
Li [†] (g)	499
Na ⁺ (g)	-390
C{-(s)	-381

7	ΔH ^e // kJ mol ⁻¹
LiCt(s)	-848
NaCt(s)	-776

(8.5 marks)

Consider the following gaseous equilibrium system at standard state. (c)

 $N_2O_4(g)$ \longrightarrow $2NO_2(g)$; $\Delta H_R^{\theta} = 57 \text{ kJmo}\ell^{-1}$ At the considering temperature, ΔS^{θ} of $N_2O_4(g)$ and $NO_2(g)$ are 304 J mo ℓ^{-1} K⁻¹ and 240 J mo ℓ^{-1} K⁻¹ respectively. Find out temperature T, that system is at equilibrium.

(1.5 marks)

- "In an ideal gas, molar mean kinetic energy of molecules is proportional to thermodynamic temperature (T)". Explain this statement considering ideal gas equation and molecule kinetic equation.
 - (ii) 50.0 g of mixture consists thermally stable inert material, and equimolar composition of KNO3 and KMnO4 was heated to decompose completely. Evolved gas was collected by downward displacement of water at 27°C room temperature. When 20% of formed gas gets dissolved in water, resultant gas has a volume of 400 cm³ and pressure of 1.5x10⁵ Pa.

- At 27°C saturated vapour pressure of water is 26.50 mmHg. Atmospheric pressure is 760 mmHg
 - (i) Find out the mass percentage of inert substance in the sample. (K=39, N=14, O=16, Mn=55)
 - (ii) How much is the mean square speed of gas.

(6.0 marks)

Experiment	Initial concentra	tion/ mol dm ⁻³	3 -1
number	[NO]	[Cl ₂]	Initial rate / mol dm ⁻³ s ⁻¹
1)	0.010	0.010	1.2x10 ⁻⁴
2)	0.010	0.020	2.4 x10 ⁻⁴
3)	0.020	0.015	R ₃
4)	0.020	0.020	4.6 x10 ⁻⁴

- (i) Introduce an expression for rate of the above reaction.
- (ii) What is the total order of the reaction?
- (iii) Find out value of rate constant K.
- (iv) In 3rd experiment, what is the value of reaction R3.

(6.0 marks

- 7. (a) Aqueous solution of salt A gave a white crystalline precipitate B with dill. HCl. Precipitate was removed by filtering and H₂S gas with passed through the resultant filterate to get a black colour precipitate C. Compound B is soluble in hot water and KI was added, and cooled to get golden yellow precipitate D. Compound A does not evolve any gas with dill. HCl. But when compound A was heated a reddish brown gas E was evolved.
 - (i) Identify compound A to E.
 - (ii) Write balanced chemical equation for thermal decomposion of compound A.
 - (iii) Write another chemical test (other than given in above) to identify the anion in compound A.

(4.0 marks

- (b) A, B and C are 03 coordinate complex compounds consist ion, of metal Nickel. In all 03 shape is octahedral. In all 03 compounds Nickel is at same oxidation state. Only CN⁻ and H₂O are coordinated as ligands. Only K⁺ is present as non coordinate ion. A, B and C compounds give altogether 2, 3 and 4 ions respectively.
 - (i) What is the oxidation state of Ni in coordinate complexes.
 - (ii) Write electronic configuration of that ion corresponds to above oxidation state.
 - (iii) Write the Formula of coordinate compound A, B and C(No need to give reasons)
 - (iv) When compound B is heated with NaOBr above Nickel ion in (i) get oxidized to another oxidation state. In this new coordinate complex molecular formula is NiK₃C₃N₃H₃O₃. It has CN⁻ and OH⁻ as ligands. It also has octahedral geometry.
 - (I) In this complex what is the new oxidation state of Ni,
 - (II) What is the formula of new compound

(5.5 marks)

(C) Following table gives, data of experiment carried out to determine kinetics of reaction of bromination of acetone (CH₃COCH₃) in acidic medium.

Experiment number	[CH ₃ COCH ₃] / mol dm ⁻³	[Br ₂] / mol dm ⁻³	[H ⁺]/ mol dm ⁻³	rate of consumption of Br ₂ /mol dm ⁻³ s ⁻¹
1	0.30	0.05	0.05	5.7x10 ⁻⁵
2	0.30	0.10	0.05	5.7x10 ⁻⁵
3	0.30	0.05	0.10	1.14x10 ⁻⁴
4	0.40	0.05	0.05	7.6x10 ⁻⁵

- (i) Rate of the reaction depends in concentration of CH₃COCH₃, H^{*} and Br₂. Considering K as rate constant, write an expression for rate of the reaction r.
- (ii) Find out order with respect to each reactant using above data.
- (iii) What is the total order of the reaction.
- (iv) Calculate rate constant of the reaction.

(5.5 marks)

8. (a) Using only chemicals given in the list, show how do you carry out following conversion.

$$\bigcirc CH_2CH_2OH \bigcirc \bigcirc CH_3CH_3OH$$

Chemical list:- H_2 , $Pd/BaSO_4$ / quinoline, HBr, conc. H_2SO_4 , Br_2 , $CC\ell_4$ alcholic KOH , Na

(5.0 marks)

(b) Using A as the only initial organic compound, show how do you synthesize compound B.

(3.5 marks)

- (c) Write the mechanism for reaction of 2-Methylpropene and HBr.
- (d) Hydrocarbon A gives a white precipitate with AgNO₃/NH₃. A has two C atoms with sp²hybridization and two C atoms with sp hybridization. Also it has 3 sp³ hybridized carbon atoms. A shows geometric and optical isomerism.
 - (i) What is the molecular formula of A.
 - (ii) Draw the structure of A.
 - (iii) What is the IUPAC name of A.

(4.0 marks)

9. (a) When two aqueous solutions of compound A and B were mixed, water insoluble and insoluble in dill. HNO3 compound C and water soluble compound D were formed. When compound A was heated brown colour gas E was formed. When (NH4)2CO3 was added to aqueous solution of A. White precipitate F was formed and that precipitate releases a colourless gas on heating. A gave a apple green flame in flame test.

When NH₄OH was added to aqueous solutions of compound B, dirty green precipitate H, formed, which is insoluble in excess respont.

- (i) Identify compounds A to H.
- (ii) Write balanced chemical equations for reactions of formation of compound C to H.

(7.5 marks)

(b) 1.0 g of KClO₃ and KCl mixture was dissolved in 250.0 cm³ of water. From this solution 25.0 cm³ was reacted with excess SO₂ and reaming SO₂ was expelled by heating. When acidified AgNO₃ was added, a precipitate with mass 1.435 g was formed.

From the initial solution another 25.00 cm³ was taken and 30.00 cm³ of 0.5 moldm⁻³ FeSO₄ was added. Unreacted FeSO₄ in this, was reacted with 0.1 moldm⁻³ K₂Cr₂O₇ solution which required 12.50 cm³ volume. Find out molar ratio of KClO₃ and KCl in initial mixture.

(Ag = 108, Cl = 35.5)

(7.5 marks

10. (a) Certain reactions relevant to salt X are given in below.

. 306

- (i) Write chemical formula for complexes of A, B and C.
- (ii) Name those compounds according to IUPAC method.
- (iii) Name shapes of A, B and C.
- (iv) Identify D, E, F and G.
- (v) Write the chemical formula of salt X.

(7.0 marks)

- (b) 8.0 g of mixture consists (NH₄)₂ Cr₂O₇, (NH₄)₂ SO₄ and NH₄NO₃ was provided.
 - (A) When this mixture was heated to get a constant mass, mass of resultant solid residue was 0.76 g.
 - (B) Then above initial mixture was dissolved to get 1.0 dm³ of aqueous solution. 100.0 cm³ of this solution was heated with 2 moß dm³ excess NaOH to give solution X and a gas was evolved. Evolved gas was absorbed on 100.0 cm³ of 0.1 moß dm⁻³ HC₺ solution. Remaining HC₺ was back titrated with 0.1mo₺ dm⁻³ NaOH solution which required 40.0 cm³ to reach end point.
 - (C) Above solution X was heated by adding Al power and evolved gas was absorbed on 75.00 cm³ of 0.1 mol dm⁻³ HCl solution. When it was observed that bubbling ceased remaining HCl was back titrated with 0.1 mol dm⁻³ NaOH solution, which required 30.0 cm³ to reach end point.
 - (i) Write balanced equations for all reaction that take place in process A, B and C.
 - (ii) Find out amount (mol) of (NH₄)₂ Cr₂O₇, (NH₄)₂SO₄ and NH₄NO₃ separately.
 - (iii) Find out mass percentage of NH4NO3 in initial mixture.

$$(Cr = 52, N = 14, H = 1, O = 16, P = 31)$$

(8.0 marks)